高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn):軌跡方程的求解

編輯: 逍遙路 關(guān)鍵詞: 高三學(xué)習(xí)指導(dǎo) 來(lái)源: 高中學(xué)習(xí)網(wǎng)

學(xué)無(wú)止境,高中是人生成長(zhǎng)變化最快的階段,所以應(yīng)該用心去想,去做好每件事,為大家整理了“高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn):軌跡方程的求解”,希望可以幫助到更多學(xué)子。

高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn):軌跡方程的求解

符合一定條件的動(dòng)點(diǎn)所形成的圖形,或者說(shuō)符合一定條件的點(diǎn)的全體所組成的集合,叫做滿足該條件的點(diǎn)的軌跡。

軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。

1.建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);

2.寫(xiě)出點(diǎn)M的集合;

3.列出方程=0;

4.化簡(jiǎn)方程為最簡(jiǎn)形式;

5.檢驗(yàn)。

二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

1.直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

2.定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。

3.相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

4.參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

5.交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

求動(dòng)點(diǎn)軌跡方程的一般步驟:

①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);

③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;

④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);

⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn):軌跡方程的求解由為您整理提供,望各位考生能夠努力奮斗,成績(jī)更上一層樓。更多數(shù)學(xué)知識(shí)點(diǎn)請(qǐng)關(guān)注【】


本文來(lái)自:逍遙右腦記憶 http://yy-art.cn/gaosan/141268.html

相關(guān)閱讀:學(xué)渣親述:高三一年只因牢記這三點(diǎn),我進(jìn)了北大!