高二期中考試后的數(shù)學(xué)反思和計劃
一.試題特點
1、試題模式
按照高考試題的模式進(jìn)行命題,一共有21題,其中選擇題12題,填空題4題,解答題5題?荚嚂r間120分鐘,滿分150分。
2、 注重基礎(chǔ)知識、基本技能的考查
讓不同的學(xué)生掌握不同層次的數(shù)學(xué),本次高二試卷特注重基礎(chǔ)知識的考查,90%是基礎(chǔ)知識題,只有10%是靈活性比較強的題目,這樣就可以讓更多的學(xué)生對數(shù)學(xué)學(xué)習(xí)充滿信心。
3、 注重能力考查
考查學(xué)生基礎(chǔ)知識的掌握程度,是高考的重要目標(biāo)之一.要善于知識之間的聯(lián)系,善于綜合應(yīng)用.考查時,既注重綜合性,又兼顧到全面,更注意突出重點.整個試卷的計算量有點大,,注重考查數(shù)學(xué)思想和基本方法以及靈活地解決問題的能力,如第21題的靈活性比較強,使絕大多數(shù)的學(xué)生在此處失掉過多的分,有針對性地考查解析幾何中的運算能力。
二.考試結(jié)果
全年級只有5個人及格,其中文科3個人,理科2個人。文科最高分為108分,理科最高分為105分。
三.試題及學(xué)生錯誤分析
第5題,很多同學(xué)選D,主要原因是忘記了中點坐標(biāo)公式和計算能力差:
第7題,主要錯誤是不記得真命題的概念,數(shù)學(xué)知識薄弱難以判斷真假:
第8題,主要錯誤在于(1)不理解橢圓、雙曲線中a、b所表示的意義和a、b、c所滿足的關(guān)系式;(2)不考慮m、n的取值范圍;
第9題(理),主要錯誤在于向量的數(shù)量積概念和運算法則掌握不牢固;
第12題,主要錯誤在于學(xué)生對雙曲線的漸近線、離心率知識綜合運用能力較差;
第16題,主要錯誤在于學(xué)生對復(fù)合命題的概念不理解,集合的子集掌握得不牢固,從而不懂得取出兩個簡單命題;
第19題(理),主要錯誤在于(1)不懂得建立空間直角坐標(biāo)系;(2)不懂得表示點的坐標(biāo);(3)不懂得表示法向量的坐標(biāo):
第21題,主要錯誤在于(1)學(xué)生的代換能力差;(2)證明不符合邏輯;(3)學(xué)生的運算能力不是太強;(4)對直線與拋物線問題的處理方法掌握得也不是很好;
四、思考與建議
從本次考試可以看出,整體質(zhì)量不容樂觀.低分的人很多,這反映了學(xué)生的基礎(chǔ)不夠扎實,解決問題的能力不強,有一些知識還沒有真正掌握。給出教學(xué)建議如下:
1、平時教學(xué)應(yīng)注重基礎(chǔ),讓所有學(xué)生掌握最基本的數(shù)學(xué)知識和基本技能。如:基本概念、公式、定理、定義的教學(xué)就應(yīng)注重基礎(chǔ),讓學(xué)生真正理解、掌握、記憶到位。
2、平時講解數(shù)學(xué)例題時有意識地滲透數(shù)學(xué)思想方法,讓學(xué)生逐漸養(yǎng)成思考數(shù)學(xué)問題的習(xí)慣。
3、要注重培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣、思維習(xí)慣和作業(yè)習(xí)慣,強化解題規(guī)范的要求。
4、要著重培養(yǎng)學(xué)生熟練、準(zhǔn)確的運算能力,解析幾何問題的運算較繁,應(yīng)提倡學(xué)生尋找最簡的處理方法,更要讓學(xué)生多體會運算當(dāng)中的技巧。
5、應(yīng)注重培養(yǎng)學(xué)生獨立思考問題,解決問題的能力,讓學(xué)生體驗數(shù)學(xué)的巨大作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,不斷提高數(shù)學(xué)教學(xué)質(zhì)量。
本文來自:逍遙右腦記憶 http://yy-art.cn/gaoer/670508.html
相關(guān)閱讀:高中二年學(xué)生寒假計劃(語文)