高三數(shù)學(xué)第二輪的復(fù)習(xí),是在第一輪復(fù)習(xí)的基礎(chǔ)上,對(duì)高考知識(shí)點(diǎn)進(jìn)行鞏固和強(qiáng)化,是考生數(shù)學(xué)能力和學(xué)習(xí)成績(jī)大幅度提高的關(guān)鍵階段,此階段的復(fù)習(xí)指導(dǎo)思想是:鞏固、完善、綜合、提高.就大多數(shù)同學(xué)而言,鞏固,即鞏固第單元復(fù)習(xí)的成果,把鞏固三基(基礎(chǔ)知識(shí)、基本方法、基本技能)放在首位,強(qiáng)化知識(shí)的系統(tǒng)與記憶;完善,就是通過(guò)此輪復(fù)習(xí),查漏補(bǔ)缺,進(jìn)一步建立數(shù)學(xué)思想、知識(shí)規(guī)律、方法運(yùn)用等體系并不斷總結(jié)完善;綜合,就是在課堂做題與課外訓(xùn)練上,減少單一知識(shí)點(diǎn)的試題,增強(qiáng)知識(shí)點(diǎn)之間的銜接,增強(qiáng)試題的綜合性和靈活性;提高,就是進(jìn)一步培養(yǎng)和提高對(duì)數(shù)學(xué)問(wèn)題的閱讀與概括能力、分析問(wèn)題和解決問(wèn)題的能力.因此,高三數(shù)學(xué)第二輪的復(fù)習(xí),對(duì)于課堂聽講并適當(dāng)作筆記,課外訓(xùn)練、自主領(lǐng)悟并總結(jié)等都有較高要求,有“二輪看水平”的說(shuō)法!
“二輪看水平”概括了第二輪復(fù)習(xí)的目標(biāo)、要求和思路.具體說(shuō)來(lái)就是“四個(gè)看與四個(gè)度”:一看對(duì)近幾年高考?碱}型的作答是否熟練,是否準(zhǔn)確把握了考試要求的“度”——《考試說(shuō)明》中“了解、理解、掌握”三個(gè)遞進(jìn)的層次,明確“考什么”“怎么考”;二看在課堂上是否緊跟老師的思維并適當(dāng)作筆記,把握好聽、記、練的“度”;三看知識(shí)的串連、練習(xí)的針對(duì)性是否強(qiáng),能否使模糊的知識(shí)清晰起來(lái),缺漏的板塊填補(bǔ)起來(lái),雜亂的方法梳理起來(lái),孤立的知識(shí)聯(lián)系起來(lái),形成系統(tǒng)化、條理化的知識(shí)框架,控制好試題難易的“度”;四看練習(xí)或檢測(cè)與高考是否對(duì)路,哪些內(nèi)容應(yīng)稍微拔高,哪些內(nèi)容只需不降低,主次適宜,重在基礎(chǔ)知識(shí)的靈活運(yùn)用和常用數(shù)學(xué)思想方法的掌握,注重適時(shí)反饋的“度”.
現(xiàn)就高三數(shù)學(xué)第二輪的復(fù)習(xí),僅從教師指引勤學(xué)苦練基本功,課后有效反思提高復(fù)習(xí)效率這兩方面談幾點(diǎn)建議,供同學(xué)們參考.
一、聽從老師指引,勤學(xué)苦練基礎(chǔ)牢
明確高考“重點(diǎn)”板塊,突出二輪“主體”專題.在第二輪復(fù)習(xí)的過(guò)程中,應(yīng)當(dāng)明確復(fù)習(xí)的重點(diǎn),對(duì)高考“考什么”“怎樣考”了如指掌.如此才能做題有選擇,反思有章法,鉆研更深入.
要在老師的引導(dǎo)下,對(duì)下列主要專題進(jìn)行復(fù)習(xí)與訓(xùn)練,鞏固并提高.
1.函數(shù)與導(dǎo)數(shù)(及其應(yīng)用);2.不等式(解法、證明及應(yīng)用);3.數(shù)列(及其應(yīng)用);4.三角函數(shù)(圖象、性質(zhì)及變換);5.直線與平面及簡(jiǎn)單幾何體(空間角、距離、面積與體積的計(jì)算);6.直線與圓錐曲線;7.概率與統(tǒng)計(jì).
第一,函數(shù)與不等式是重點(diǎn).在代數(shù)中,以函數(shù)為主干,不等式與函數(shù)的綜合是熱點(diǎn).
(1)函數(shù)的性質(zhì),如單調(diào)性、奇偶性、周期性、對(duì)稱性等,多以具體函數(shù)及圖象的幾何直觀展開,也適度考查抽象函數(shù).
(2)一元二次函數(shù),則是重中之重,函數(shù)值域(最值),以及轉(zhuǎn)化為二次函數(shù)的值域,特別是含參變量的二次函數(shù)值域的研討為重點(diǎn);方法以突出配方法、換元法和基本不等式法為重點(diǎn),二次函數(shù)零點(diǎn)的分布,二次不等式解的討論,二次曲線交點(diǎn)問(wèn)題等都與此相關(guān).
(3)對(duì)于不等式證明,與函數(shù)聯(lián)系的、與數(shù)列綜合的是重點(diǎn),在掌握比較法和基本不等式法的基礎(chǔ)上,掌握幾種簡(jiǎn)單的放和縮的技巧是必要的.
第二,數(shù)列,以等差、等比兩種基本數(shù)列為載體考查數(shù)列的通項(xiàng)、求和、應(yīng)用與極限等為重點(diǎn).應(yīng)突出“基本量”的思想和轉(zhuǎn)換與化歸的方法,對(duì)于遞推式給出的數(shù)列,可用“歸納——猜想——證明”的方法.
第三,三角函數(shù)的考查,高考已采取了給出“積和互化公式”的模式,且考題多為中難度,訓(xùn)練中重在“變換”與“求值”,狠抓基本公式的熟練運(yùn)用:正用、逆用、變用及三角換元時(shí)用.
第四,概率與統(tǒng)計(jì),近兩年有下降趨勢(shì),訓(xùn)練題型、方法、難度等,以達(dá)到或略高于教材水準(zhǔn)即可,要重視與實(shí)際應(yīng)用問(wèn)題相結(jié)合.
第五,立體幾何應(yīng)當(dāng)“兩條腿走路”:既能用傳統(tǒng)的合情推理,也能用新增的向量法求解!
(1)突出“空間”、“立體”,即把線線、線面、面面位置關(guān)系的考查置于某幾何體中,棱柱以三棱柱、正方體為重點(diǎn),棱錐以一條側(cè)棱或一個(gè)側(cè)面垂直于底面為重點(diǎn),棱柱和棱錐的結(jié)合體應(yīng)予以重視.空間直線與平面的位置關(guān)系以判斷和證明垂直為重點(diǎn),重視三垂線定理及逆定理的靈活運(yùn)用,熟練運(yùn)用空間向量的方法與空間坐標(biāo)計(jì)算的方法求解相關(guān)問(wèn)題.
(2)空間角以二面角為重點(diǎn),熟悉三種找二面角的常用方法.空間距離以點(diǎn)面距、線面距為重點(diǎn),等面積或等體積法是最常用的.計(jì)算面積和體積,則以解答題居多,求法靈活,思路寬廣.
第六,解析幾何以基本性質(zhì)、基本運(yùn)算為目標(biāo).客觀題照顧面,解答題較綜合,突出直線和圓錐曲線的交點(diǎn)、弦長(zhǎng)、軌跡等,要注重與函數(shù)、數(shù)列、三角等內(nèi)容的聯(lián)系.
二、自主探索總結(jié),深思勤悟效率高
為了更加有效地進(jìn)行第二輪復(fù)習(xí),解題后應(yīng)當(dāng)深入反思,可以從如下幾個(gè)方面進(jìn)行.
1.思知識(shí)點(diǎn)、思切入點(diǎn)、思關(guān)鍵點(diǎn)、思注意點(diǎn).
在問(wèn)題解答之后,以反思知識(shí)點(diǎn)促使對(duì)數(shù)學(xué)知識(shí)的理解深刻化;以反思為什么要這樣想,關(guān)鍵在哪里,切入點(diǎn)是什么,思維的障礙如何突破等促使思維精確化和概括化,上升到理性思維;以反思已知條件與求解問(wèn)題之間的聯(lián)系與區(qū)別,哪些條件沒(méi)用過(guò),結(jié)果與題意或生活實(shí)際是否相符,思考題中易混易錯(cuò)之處,提高辨錯(cuò)能力,促使我們對(duì)常見易混易錯(cuò)的知識(shí)點(diǎn)的警覺(jué)化.
2.思?xì)w類、思規(guī)律、思一般性結(jié)論.
在解答問(wèn)題后,通過(guò)自主歸類、自主探究、自主思考解題方法、解題技巧和解題規(guī)律等,回憶與該題同類的習(xí)題,并進(jìn)行比較,綜合分析它們的解法,找到解決這類問(wèn)題的技巧與方法,并能進(jìn)行適度地拓展和必要地延伸,達(dá)到舉一反三、由點(diǎn)到面、觸類旁通、由一題到一類的目的,達(dá)到解一題破百題的復(fù)習(xí)效果.
3.思多解、思變通.
在解題中,一要堅(jiān)持采用一題多解,從多個(gè)角度思考問(wèn)題,注重前后知識(shí)的聯(lián)系,既可以鍛煉思維的發(fā)散性、開闊性,突破思維的障礙及解除思維定勢(shì),又可以培養(yǎng)綜合運(yùn)用所學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題的能力和不斷創(chuàng)新的意識(shí).二要堅(jiān)持采用一題多變,確定題目的典型性,找出解題的一般性規(guī)律和常用的通性通法,不局限于就題論題,要能在拓展與變化引申中培養(yǎng)思維的變通性,在尋找多解與變通中提高思維能力.
4.思數(shù)學(xué)思想、思通性通法.
解題結(jié)束后,要在知識(shí)點(diǎn)、通性通法、數(shù)學(xué)思想方法上進(jìn)行回顧和總結(jié),使我們對(duì)所應(yīng)用的知識(shí)理解得更加深刻.從更高的角度去認(rèn)識(shí)和理解數(shù)學(xué)的主干知識(shí)和數(shù)學(xué)的基本框架,通過(guò)變換角度去分析、處理,得到這種典型問(wèn)題不同的解法和所蘊(yùn)含的相同數(shù)學(xué)規(guī)律;從整體的角度去分析、總結(jié),得到解題的通性通法和基本技能,使我們獲得一次基本的、切實(shí)的、成功的數(shù)學(xué)思想方法的熏陶;從更高的角度切實(shí)體驗(yàn)和理解數(shù)學(xué)思想對(duì)解題的指導(dǎo)作用!通過(guò)反思掌握一些基本的數(shù)學(xué)技能、重要的數(shù)學(xué)方法、常用的數(shù)學(xué)思想,就能在以后的解題過(guò)程中自覺(jué)地、靈活地運(yùn)用這些基本技能、基本方法、基本思想,從而有效地提高復(fù)習(xí)效果和考試成績(jī).
數(shù)學(xué)知識(shí)是活的、可變的
本文來(lái)自:逍遙右腦記憶 http://yy-art.cn/xuexi/171009.html
相關(guān)閱讀:2014高考英語(yǔ)考試說(shuō)明解讀及第三輪復(fù)習(xí)建議
政治:2014北京高考新課改復(fù)習(xí)方案
二輪復(fù)習(xí)中外語(yǔ)學(xué)科復(fù)習(xí)策略與重點(diǎn)
四級(jí)沖刺階段復(fù)習(xí)分項(xiàng)指導(dǎo)
數(shù)學(xué)高考復(fù)習(xí)你必須掌握八大“訣竅”