相似多邊形及其性質(zhì)

編輯: 逍遙路 關(guān)鍵詞: 九年級(jí) 來(lái)源: 高中學(xué)習(xí)網(wǎng)
29.6相似多邊形及其性質(zhì)
教學(xué)目標(biāo)
1.知識(shí)與技能
①相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)角的比,對(duì)應(yīng)叫平分線的比和對(duì)應(yīng)中線的比和相似比的關(guān)系。
②利用相似三角形的性質(zhì)解決一些實(shí)際問(wèn)題。
2.情感與態(tài)度
①相似三角形中對(duì)應(yīng)線段的比和相似比的關(guān)系,培養(yǎng)學(xué)生的探索精神和合作意識(shí)。
②通過(guò)運(yùn)用相似三角形的性質(zhì),增強(qiáng)學(xué)生的應(yīng)用意識(shí)
重點(diǎn)與難點(diǎn)
重點(diǎn):相似三角形中對(duì)應(yīng)線段比值的推倒,運(yùn)用相似三角形的性質(zhì)解決實(shí)際問(wèn)題。
難點(diǎn):相似三角形的性質(zhì)的運(yùn)用。
教學(xué)思考
通過(guò)例題的分析講解,讓學(xué)生感受相似三角形的性質(zhì)在實(shí)際生活中的應(yīng)用。
解決問(wèn)題
在理解并掌握相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)角平分線的比和對(duì)應(yīng)中線的比都等于相似比的過(guò)程中,培養(yǎng)學(xué)生利用相似三角形的性質(zhì)解決現(xiàn)實(shí)問(wèn)題的意識(shí)和應(yīng)用能力
教學(xué)方法
引導(dǎo)啟發(fā)式
課前準(zhǔn)備
幻燈片
教學(xué)設(shè)計(jì)
□教師活動(dòng)□學(xué)生活動(dòng)
一、創(chuàng)設(shè)問(wèn)題情境,引入新課
帶領(lǐng)學(xué)生復(fù)習(xí)相似多邊形的性質(zhì)及相似三角形的性質(zhì),并提出疑問(wèn)“在兩個(gè)相似三角形中,是否只有對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例這個(gè)性質(zhì)?”從而引導(dǎo)學(xué)生探究相似三角形的其他性質(zhì)。
認(rèn)真聽(tīng)課、思考、回答老師提出的問(wèn)題 。
二、新課講解
1、做一做
以實(shí)際問(wèn)題做引例,初步讓學(xué)生感知相似三角形對(duì)應(yīng)高的比和相似比的關(guān)系。
鉗工小王準(zhǔn)備按照比例尺為3∶4的圖紙制作三角形零件,圖紙上的△ABC表示該零件的橫斷面△A′B′C′,CD和C′D′分別是它們的高.
(1) , , 各等于多少?
(2)△ABC與△A′B′C′相似嗎?如果相似,請(qǐng)說(shuō)明理由,并指出它們的相似比.
(3)請(qǐng)你在圖4-38中再找出一對(duì)相似三角形.
(4) 等于多少?你是怎么做的?與同伴交流.

閱讀課本,弄清題意,根據(jù)已有的經(jīng)驗(yàn)積極思考,動(dòng)手操作畫(huà)圖,在練習(xí)本上作答。

依次回答課本提出的4個(gè)問(wèn)題并加以思考

2、議一議
根據(jù)上面的引例讓學(xué)生猜測(cè),證明相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)角平分線的比和對(duì)應(yīng)中線的比都等于相似比。
已知△ABC∽△A′B′C′,△ABC與△A′B′C′的相似比為k.
(1)如果CD和C′D′是它們的對(duì)應(yīng)高,那么 等于多少?
(2)如果CD和C′D′是它們的對(duì)應(yīng)角平分線,那么 等于多少?如果CD和C′D′是它們的對(duì)應(yīng)中線呢?

學(xué)生經(jīng)歷觀察,推證、討論,交流后,獨(dú)立回答。

3、教師歸納
相似三角形的性質(zhì):
相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)角平分線的比和對(duì)應(yīng)中線的比都等于相似比。

學(xué)生理解、熟記。
歸納、類比加深對(duì)相似性質(zhì)的理解

三、課堂練習(xí):
例題講解,利用相似三角形的性質(zhì)解決一些問(wèn)題。
如圖所示,在等腰三角形ABC中,底邊BC=60 cm,高AD=40 cm,四邊形PQRS是正方形.
(1)△ASR與△ABC相似嗎?為什么?
(2)求正方形PQRS的邊長(zhǎng).
閱讀例題,弄懂題意,然后運(yùn)用所學(xué)知識(shí)作答。寫(xiě)出解題過(guò)程.

四、探索活動(dòng):
如圖,AD,A’D’分別是△ABC和△A’B’C’的角平分線,且AB:A’B’=BD:B’D’=AD:A’D’,你認(rèn)為△ABC∽△A’B’C’嗎?

針對(duì)此題,學(xué)生先獨(dú)立思考,然后展開(kāi)小組討論,充分交流后作答。

五、課時(shí)小結(jié)
指導(dǎo)學(xué)生結(jié)合本節(jié)課的知識(shí)點(diǎn),對(duì)學(xué)習(xí)過(guò)程進(jìn)行。
本節(jié)課主要根據(jù)相似三角形的性質(zhì)和判定判定推導(dǎo)了相似三角形的性質(zhì)、相似三角形的對(duì)應(yīng)高的比、對(duì)應(yīng)角平分線的比和對(duì)應(yīng)中線的比都等于相似比。

學(xué)生暢所欲言,談學(xué)習(xí)的,遇到的困難以及獲得的啟發(fā)。

六、布置課后作業(yè):
課后習(xí)題節(jié)選
獨(dú)立完成作業(yè)。
板書(shū)設(shè)計(jì)

29.6相似多邊形及其性質(zhì)
一、1.做一做
2.議一議
3.例題講解
二、課堂練習(xí)
三、課時(shí)小節(jié)
四、課后作業(yè)


本文來(lái)自:逍遙右腦記憶 http://yy-art.cn/chusan/54800.html

相關(guān)閱讀:等腰三角形的性質(zhì)定理和判定定理及其證明