【—初二數(shù)學(xué)軸對稱總結(jié)】像我們常見的等腰三角形,等邊三角形,等腰梯形等都是軸對稱圖形。
軸對稱
性質(zhì)
1.對稱軸是一條直線。
2.垂直并且平分一條線段的直線稱為這條線段的垂直平分線,或中垂線。線段垂直平分線上的點到線段兩端的距離相等。
3.在軸對稱圖形中,對稱軸兩側(cè)的對應(yīng)點到對稱軸兩側(cè)的距離相等。
4.在軸對稱圖形中,沿對稱軸將它對折,左右兩邊完全重合。
5.如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線
6.圖形對稱。
定理及其逆定理
定理1: 關(guān)于某條直線對稱的兩個圖形是全等形。(全等形不一定關(guān)于某條直線對稱)
定理2:如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線。
定理3:兩個圖形關(guān)于某條直線對稱,如果對稱軸和某兩條對稱線段的延長線相交,那么交點在對稱軸上。
定理3的逆定理:如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。
生活作用
1、為了美觀,比如天安門,對稱就顯的美觀漂亮;
2、保持平衡,比如飛機的兩翼;
3、特殊工作的需要,比如五角星,剪紙。
例如圓和正多邊形也都是軸對稱圖形。
本文來自:逍遙右腦記憶 http://www.yy-art.cn/chuzhong/187043.html
相關(guān)閱讀:初中數(shù)學(xué)幾何公式定理匯編(5)