初中數(shù)學(xué)重要知識點之等差數(shù)列

編輯: 逍遙路 關(guān)鍵詞: 初中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)


  【—等差數(shù)列】等差數(shù)列知識:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列。

  等差數(shù)列知識

  等差中項

  由三個數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時,A叫做a與b的等差中項(arithmetic mean)。

  有關(guān)系:A=(a+b)/2

  通項公式

  an=a1+(n-1)d

  a1=S1(n=1)時

  an=Sn-S(n-1) (n≥2)時

  an=kn+b(k,b為常數(shù)) 推導(dǎo)過程:an=dn+a1-d 令d=k,a1-d=b 則得到an=kn+b

  前n項和

  倒序相加法推導(dǎo)前n項和公式:

  Sn=a1+a2+a3······+an

  =a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d] ①

  Sn=an+(an-d)+(an-2d)+······+[an-(n-1)d] ②

  由①+②得2Sn=(a1+an)+(a1+an)+(a1+an)(n個)=n(a1+an)

  固 Sn=n(a1+an)/2

  等差數(shù)列的前n項和等于首末兩項的和與項數(shù)乘積的一半:

  Sn=n(a1+an)/2=n*a1+n(n-1)d/2

  Sn=(d/2)*n^2+(a1-d/2)n

  性質(zhì)

  且任意兩項am,an的關(guān)系為:

  an=am+(n-m)d

  它可以看作等差數(shù)列廣義的通項公式。

  從等差數(shù)列的定義、通項公式,前n項和公式還可推出:

  a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
本文來自:逍遙右腦記憶 http://www.yy-art.cn/chuzhong/197576.html

相關(guān)閱讀:初三數(shù)學(xué)代數(shù)學(xué)習(xí)法