初中數(shù)學(xué)教學(xué)若要體現(xiàn)數(shù)學(xué)課程改革的基本理念,必須充分地考慮數(shù)學(xué)學(xué)科的特點(diǎn)、學(xué)生心理特點(diǎn)和認(rèn)知發(fā)展水平,針對(duì)不同水平和興趣的學(xué)生實(shí)行多樣化學(xué)習(xí),也可運(yùn)用多種教學(xué)方法和手段,引導(dǎo)學(xué)生積極主動(dòng)地學(xué)習(xí)。而不等式的證明方面,方法靈活多樣,還和很多內(nèi)容相結(jié)合,它既是中學(xué)數(shù)學(xué)教學(xué)的難點(diǎn),也是數(shù)學(xué)競(jìng)賽當(dāng)中的熱點(diǎn)。
一、注重基礎(chǔ)知識(shí)的教學(xué)
初中的數(shù)學(xué)內(nèi)容較小學(xué)教學(xué)內(nèi)容更系統(tǒng)和深入,涉及面更廣。因此,教師在教學(xué)中應(yīng)該注重基礎(chǔ)知識(shí)的教學(xué),幫助學(xué)生打下厚實(shí)的基礎(chǔ),以利于學(xué)生以后的數(shù)學(xué)學(xué)習(xí)。首先應(yīng)該擺正師生關(guān)系,在中國(guó)的教育當(dāng)中一直強(qiáng)調(diào)著“師道尊嚴(yán)”。教師在課堂上一般都是居高而上,普遍都是教師在講臺(tái)上講,學(xué)生在下面埋頭“消化”教師講的知識(shí)點(diǎn)。教師掌握著上課的節(jié)奏,這樣學(xué)生顯得很被動(dòng)。在初中不等式教學(xué)當(dāng)中涉及很多的知識(shí)點(diǎn),學(xué)生僅僅知道一些公式而不會(huì)運(yùn)用是教學(xué)的一種失敗;A(chǔ)知識(shí)在教學(xué)當(dāng)中就顯得尤為重要。不等式的解題方式多樣,內(nèi)容豐富,技巧性較強(qiáng)并且要依據(jù)題設(shè)、題的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系、選擇適當(dāng)?shù)慕忸}方法,就要熟悉解題中的推理思維,需要掌握相應(yīng)的步驟、技巧和語(yǔ)言特點(diǎn)。而這一切都是建立在學(xué)生有夯實(shí)的基礎(chǔ)之上的。學(xué)生的基礎(chǔ)知識(shí)不扎實(shí)的話,在解不等式題時(shí)就步履維艱。
夯實(shí)的基礎(chǔ)來(lái)源于學(xué)生對(duì)不等式概念知識(shí)的掌握和運(yùn)用,而概念的形成有一個(gè)從具體到表象再到抽象的過(guò)程。對(duì)不等式抽象概念的教學(xué),更要關(guān)注概念的實(shí)際背景和學(xué)生對(duì)概念的掌握程度。數(shù)學(xué)的概念也是數(shù)學(xué)命題、數(shù)學(xué)推理的基礎(chǔ),學(xué)生學(xué)習(xí)不等式知識(shí)點(diǎn)也是從概念的學(xué)習(xí)開(kāi)始的。所以在不等式教學(xué)探究中教師應(yīng)注重學(xué)生的基礎(chǔ)。
二、注重學(xué)生對(duì)知識(shí)的歸納和整理
提高初中數(shù)學(xué)不等式教學(xué)效果,首先要培養(yǎng)學(xué)生主動(dòng)探索數(shù)學(xué)知識(shí)的精神,通過(guò)尋求不同思維達(dá)到解題效果來(lái)激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的興趣。引導(dǎo)學(xué)生主動(dòng)去對(duì)數(shù)學(xué)不等式知識(shí)進(jìn)行探究,通過(guò)結(jié)合所學(xué)的數(shù)學(xué)知識(shí)來(lái)形成一個(gè)完整的知識(shí)網(wǎng)絡(luò),以幫助學(xué)生完成更深入地?cái)?shù)學(xué)知識(shí)探究。同時(shí)初中數(shù)學(xué)不等式知識(shí)點(diǎn)的學(xué)習(xí)對(duì)學(xué)生歸納能力提出了較高的要求。靈活使用概念能夠幫助學(xué)生熟練地運(yùn)用數(shù)學(xué)知識(shí),對(duì)不等式這一章節(jié)知識(shí)點(diǎn)的掌握歸納和整理進(jìn)行綜合的運(yùn)用從而能夠成功地解題。例如,在含有絕對(duì)值的不等式當(dāng)中:解關(guān)于x的不等式2+a0時(shí),解集是;(2)當(dāng)2≤a<0時(shí),解集為空集;(3)當(dāng)a<2時(shí),解集為。當(dāng)學(xué)生對(duì)知識(shí)點(diǎn)進(jìn)行歸納和整理后,學(xué)生也就不會(huì)馬失前“題”。
三、開(kāi)發(fā)學(xué)生的解題技巧,培養(yǎng)學(xué)生獨(dú)立思考的能力
問(wèn)題是數(shù)學(xué)的心臟,數(shù)學(xué)學(xué)習(xí)離不開(kāi)解題,中學(xué)數(shù)學(xué)教學(xué)的目的,歸根結(jié)底在于培養(yǎng)學(xué)生的解題能力,和學(xué)生獨(dú)立思考的能力。教師將培養(yǎng)學(xué)生“數(shù)形”結(jié)合、“對(duì)應(yīng)”思維、“轉(zhuǎn)化”能力、分類的運(yùn)用、解題反思與激勵(lì)、提高學(xué)生數(shù)學(xué)不等式解題能力始終貫穿于教學(xué)始終,必須把它放在十分重要的位置。《數(shù)學(xué)課程標(biāo)準(zhǔn)》(實(shí)驗(yàn)稿)總體目標(biāo)中也明確指出,通過(guò)義務(wù)教育階段的學(xué)習(xí),學(xué)生能夠初步學(xué)會(huì)從數(shù)學(xué)的角度提出問(wèn)題、理解問(wèn)題,并能綜合運(yùn)用所學(xué)的知識(shí)和技能解決問(wèn)題,發(fā)展應(yīng)用意識(shí)。解決問(wèn)題是數(shù)學(xué)的核心,解決問(wèn)題能力的培養(yǎng)是數(shù)學(xué)教育的重要目標(biāo),中學(xué)數(shù)學(xué)教學(xué)的重要任務(wù)就是使學(xué)生“具有正確的、迅速的運(yùn)算能力,一定的邏輯思維能力和空間想象能力,從而培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力”。義務(wù)教育新課標(biāo)教材《數(shù)學(xué)》中七級(jí)下冊(cè)第九章內(nèi)容中的“一元一次不等式和一元一次不等式組”,盡管二者解題的方法相似,但學(xué)生不易在思考的前提下理解一元一次不等式解集有無(wú)數(shù)個(gè)。在教學(xué)中,教師應(yīng)該適時(shí)地把不等式解集在數(shù)軸上直觀地表示出來(lái)。在不等式證明教學(xué)當(dāng)中也有許多解題技巧。例如,比較法是證明不等式的一種最基本的方法,也是最常用的的方法,基本不等式就是用比較法證明的。其難點(diǎn)在第二步的“變形”上,變形的目的是有利于第三步判斷,求差比較法變形的方向主要是分解因式、配方。(1)作差比較法;(2)作商比較法。作差(商)比較法:作差(商)→變形→判斷符號(hào)(與1的大小)。諸如此類的還有綜合法、分析法、換元法(增量換元、三角換元、向量換元、對(duì)稱性換元、借助幾何圖形換元、代數(shù)換元、分式換元、比值換元)以及放縮法等解題方法。而這些解題的技巧需要教師的引導(dǎo),也需要學(xué)生獨(dú)立地思考解題方法。
探究式教學(xué)就是要學(xué)生探究問(wèn)題,而不是簡(jiǎn)單地讓學(xué)生理解和記憶不等式教材中現(xiàn)成的結(jié)論和公式。一個(gè)問(wèn)題,通過(guò)學(xué)生自己的探究,可以加深學(xué)生對(duì)知識(shí)點(diǎn)的理解。讓學(xué)生感興趣的問(wèn)題是一個(gè)合適的探究對(duì)象,學(xué)生也有較大的探究空間。
本文來(lái)自:逍遙右腦記憶 http://www.yy-art.cn/chuzhong/528553.html
相關(guān)閱讀:初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)之立方根