②一元二次方程根的判別式:叫做一元二次方程(a≠0)的根的判別式:
方程有兩個(gè)不相等的實(shí)數(shù)根;
方程有兩個(gè)相等的實(shí)數(shù)根;
方程沒有實(shí)數(shù)根;
③一元二次方程根與系數(shù)的關(guān)系:設(shè)、是方程(a≠0)的兩個(gè)根,那么+=,=;
不等式的基本性質(zhì):
①不等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變;
②不等式兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;
③不等式兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變;
一次函數(shù)的圖象:函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象是過點(diǎn)(0,b)且與直線y=kx平行的一條直線;
一次函數(shù)的性質(zhì):設(shè)y=kx+b(k≠0),則當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0, y隨x的增大而減;
正比例函數(shù)的圖象:函數(shù)的圖象是過原點(diǎn)及點(diǎn)(1,k)的一條直線。
正比例函數(shù)的性質(zhì):設(shè),則:
①當(dāng)k>0時(shí),y隨x的增大而增大;
②當(dāng)k<0時(shí),y隨x的增大而減小;
反比例函數(shù)的圖象:函數(shù)(k≠0)是雙曲線;
反比例函數(shù)性質(zhì):設(shè)(k≠0),如果k>0,則當(dāng)x>0時(shí)或x<0時(shí),y分別隨x的增大而減;如果k<0,則當(dāng)x>0時(shí)或x<0時(shí),y分別隨x的增大而增大;
二次函數(shù)的圖象:函數(shù)的圖象是對(duì)稱軸平行于y 軸的拋物線;
①開口方向:當(dāng)a>0時(shí),拋物線開口向上,當(dāng)a<0時(shí),拋物線開口向下;
②對(duì)稱軸:直線;
③頂點(diǎn)坐標(biāo)(;
④增減性:當(dāng)a>0時(shí),如果,則y隨x的增大而減小,如果,則y隨x的增大而增大;當(dāng)a<0時(shí),如果,則y隨x的增大而增大,如果,則y隨x的增大而減;
本文來自:逍遙右腦記憶 http://yy-art.cn/chuzhong/58759.html
相關(guān)閱讀:淺談“高效課堂”