一.集合與函數(shù)重點(diǎn)知識(shí)點(diǎn)總結(jié)
1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解.-
2.在應(yīng)用條件時(shí),易A忽略是空集的情況-
3.你會(huì)用補(bǔ)集的思想解決有關(guān)問(wèn)題嗎?-
4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?-
5.你知道“否命題”與“命題的否定形式”的區(qū)別.-
6.求解與函數(shù)有關(guān)的問(wèn)題易忽略定義域優(yōu)先的原則.-
7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng).-
8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域.-
9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào).例如:.-
10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法-
11.求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.-
12.求函數(shù)的值域必須先求函數(shù)的定義域。-
13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問(wèn)題).這幾種基本應(yīng)用你掌握了嗎?-
14.解對(duì)數(shù)函數(shù)問(wèn)題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?-
(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論-
15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?-
16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。-
17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒(méi)有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?-
本文來(lái)自:逍遙右腦記憶 http://yy-art.cn/gaozhong/198060.html
相關(guān)閱讀:高考文科數(shù)學(xué)必背公式有哪些