摘要:隨著教育改革的全面推進(jìn),新教材糾正了舊教材那種過分強(qiáng)調(diào)推理的嚴(yán)謹(jǐn)性,以及渲染邏輯推理的重要性,而是提出了新的觀點(diǎn)“合理推理”是新教材的一大特色。本文就新形勢(shì)下的初中數(shù)學(xué)教學(xué)中學(xué)生推理能力的培養(yǎng)做了探索。
關(guān)鍵詞初中數(shù)學(xué),推理能力,培養(yǎng)
長期以來,中學(xué)數(shù)學(xué)教學(xué)一直強(qiáng)調(diào)教學(xué)的嚴(yán)謹(jǐn)性,過分渲染邏輯推理的重要性而忽視了生動(dòng)活潑的合情推理,使人們誤認(rèn)為數(shù)學(xué)就是一門純粹的演繹科學(xué).事實(shí)上,數(shù)學(xué)發(fā)展史中的每一個(gè)重要的發(fā)現(xiàn),除演繹推理外,合情推理也起重要作用,如哥德巴赫猜想、費(fèi)爾馬大定理、四色問題等的發(fā)現(xiàn).其他學(xué)科的一些重大發(fā)現(xiàn)也是科學(xué)家通過合情推理、提出猜想、假說和假設(shè),再經(jīng)過演繹推理或?qū)嶒?yàn)得到的.如牛頓通過蘋果落地而產(chǎn)生靈感,經(jīng)過合情推理,提出萬有引力的猜想,后來通過庫侖的紐秤實(shí)驗(yàn)證實(shí).海王星的發(fā)現(xiàn)更是合情推理的典范.合情推理與演繹推理是相輔相成的.波利亞等數(shù)學(xué)教育家認(rèn)為,演繹推理是確定的,可靠的;合情推理則帶有一定的風(fēng)險(xiǎn)性,而在數(shù)學(xué)中合情推理的應(yīng)用與演繹推理一樣廣泛.嚴(yán)格的數(shù)學(xué)推理以演繹推理為基礎(chǔ),而數(shù)學(xué)結(jié)論的得出及其證明過程是靠合情推理才得以發(fā)現(xiàn)的.因此,我們不僅要培養(yǎng)學(xué)生演繹推理能力,而且要培養(yǎng)學(xué)生合情推理能力.《標(biāo)準(zhǔn)》要求學(xué)生“能通過觀察、實(shí)驗(yàn)、歸納、類比等獲得數(shù)學(xué)猜想,并進(jìn)一步尋求證據(jù)、給出證明或舉出反例.”也就是要求學(xué)生在獲得數(shù)學(xué)結(jié)論時(shí)要經(jīng)歷合情推理到演繹推理的過程.合情推理的實(shí)質(zhì)是“發(fā)現(xiàn)—猜想”,因而關(guān)注合情推理能力的培養(yǎng)有助于發(fā)展學(xué)生的創(chuàng)新精神.當(dāng)然,由合情推理得到的猜想,需要通過演繹推理給出證明或舉出反例否定.合情推理的條件與結(jié)論之間是以猜想與聯(lián)想作為橋梁的,直覺思維是猜想與聯(lián)想的思維基礎(chǔ).培養(yǎng)學(xué)生善于合情推理的思維習(xí)慣是形成數(shù)學(xué)直覺,發(fā)展數(shù)學(xué)思維,獲得數(shù)學(xué)發(fā)現(xiàn)的基本素質(zhì).因此在數(shù)學(xué)教學(xué)中,既要強(qiáng)調(diào)思維的嚴(yán)密性,結(jié)果的正確性,也要重視思維的直覺探索性和發(fā)現(xiàn)性,即應(yīng)重視數(shù)學(xué)合情推理的合理性和必要性.充分發(fā)揮課堂教學(xué)的作用,漸進(jìn)而有序地培養(yǎng)數(shù)學(xué)合情推理能力,提高學(xué)生素質(zhì),促進(jìn)學(xué)生健康、全面地發(fā)展。
數(shù)學(xué)家波利亞說過:數(shù)學(xué)可以看作是一門證明的科學(xué),但這只是一個(gè)方面,完成了數(shù)學(xué)理論。用最終形式表示出來。像是僅僅由證明構(gòu)成的純粹證明性。嚴(yán)格的摘要隨著教育改革的全面推進(jìn),新教材糾正了舊教材那種過分強(qiáng)調(diào)推理的嚴(yán)謹(jǐn)性,以及渲染邏輯推理的重要性,而是提出了新的觀點(diǎn)“合理推理”是新教材的一大特色。本文就新形勢(shì)下的初中數(shù)學(xué)教學(xué)中學(xué)生推理能力的培養(yǎng)做了探索。
關(guān)鍵詞初中數(shù)學(xué)推理能力培養(yǎng)數(shù)學(xué)推理以演繹推理為基礎(chǔ),而數(shù)學(xué)結(jié)論的得出及其證明過程是靠合情推理才得以發(fā)現(xiàn)的。那么什么是合情推理呢?它是由一個(gè)或幾個(gè)已知判斷推出另一個(gè)未知判斷的思維形式,合情推理是根據(jù)已有的知識(shí)和經(jīng)驗(yàn),在某種情境和過程中推出過能性結(jié)論的推理。合情推理就是一種合乎情理的推理,主要包括觀察、比較、不完全歸納、類比、猜想、估算、聯(lián)想、自覺、頓悟,靈感等思維形式。合理推理所得的結(jié)果是具有偶然性,但也不是完全憑空想象,它是根據(jù)一定的知識(shí)和方法,做出的探索性的判斷。因而在平時(shí)的課堂教學(xué)中培養(yǎng)學(xué)生的合情推理是一個(gè)值得深思的課題。
當(dāng)今教育改革正在全面推進(jìn)。培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力是大家公認(rèn)的新教改的宗旨。合情推理是培養(yǎng)創(chuàng)新能力的一種手段和過程。人們認(rèn)為數(shù)學(xué)是一門純粹的演繹科學(xué),這難免太偏見了,忽視了合情推理。合情推理和演繹推理相輔互相成的。在證明一個(gè)定理之前,先得猜想。
發(fā)現(xiàn)一個(gè)命題的內(nèi)容,在完全作出證明之前,先得不斷檢驗(yàn),完善,修改所提出的猜想,還得推測(cè)證明的思路。合情推理的實(shí)質(zhì)是:”發(fā)現(xiàn)到猜想”。牛頓早就說過;”沒有大膽的猜想就沒有偉大的發(fā)現(xiàn)。”著名的數(shù)學(xué)教育家波利亞早在1953年就提出:”讓我們教猜測(cè)吧?’先測(cè)后證一這是大多數(shù)的發(fā)現(xiàn)之道”。因此在數(shù)學(xué)學(xué)習(xí)中也要重思維的直覺探索性和發(fā)現(xiàn)性,即應(yīng)重視數(shù)學(xué)合情推理能力的培養(yǎng)。數(shù)學(xué)中合情推理能力大致分為以下四個(gè)方面內(nèi)容:一、恰當(dāng)創(chuàng)設(shè)情境,引導(dǎo)學(xué)生觀察合情推理并非盲目的、漫無邊際的胡亂猜想.它是以數(shù)學(xué)中某些已知事實(shí)為基礎(chǔ),通過選擇恰當(dāng)?shù)牟牧蟿?chuàng)設(shè)情境,引導(dǎo)學(xué)生觀察.Euler曾說過:“數(shù)學(xué)這門科學(xué),需要觀察,還需要實(shí)驗(yàn).”觀察是人們認(rèn)識(shí)客觀世界的門戶.觀察可以調(diào)動(dòng)學(xué)生的各種感官,在已有知識(shí)的基礎(chǔ)上產(chǎn)生聯(lián)想,通過觀察還可以減少猜想的盲目性.同時(shí)觀察力也是人的一種重要能力.所以在教學(xué)中要給學(xué)生必要的時(shí)間和空間進(jìn)行觀察,培養(yǎng)良好的觀察習(xí)慣,提高觀察力,發(fā)展合理推理能力。
例如,把20,21,22,23,24,25這六個(gè)數(shù)分別放在六個(gè)圓圈里,使這個(gè)三角形每邊上的三個(gè)數(shù)之和相等。通過觀察圖形以及這六個(gè)數(shù)后,我們應(yīng)該想到,較大的幾個(gè)數(shù)或較小的幾個(gè)數(shù)不能同時(shí)在三角形的某一邊上,否則其和就會(huì)太大或太小,也就是說,可以把較小的三個(gè)數(shù)分別放在三個(gè)頂點(diǎn)上,再把三個(gè)較大的數(shù)放在相應(yīng)的對(duì)邊上。
二、精心設(shè)計(jì)實(shí)驗(yàn),激發(fā)學(xué)生思維Gauss曾提到過,他的許多定理都是靠實(shí)驗(yàn)、歸納法發(fā)現(xiàn)的,證明只是補(bǔ)充的手段.在數(shù)學(xué)教學(xué)中,正確地恰到好處地應(yīng)用數(shù)學(xué)實(shí)驗(yàn),也是當(dāng)前實(shí)施素質(zhì)教育的需要.著名的數(shù)學(xué)教育家GeorgePolya曾指出:“數(shù)學(xué)有兩個(gè)側(cè)面,一方面是歐幾里得式的嚴(yán)謹(jǐn)科學(xué),從這方面看,數(shù)學(xué)像是一門系統(tǒng)的演繹科學(xué);但是另一方面,在創(chuàng)造過程中的數(shù)學(xué)更像是一門實(shí)驗(yàn)性的歸納科學(xué)”,從這一點(diǎn)上講,數(shù)學(xué)實(shí)驗(yàn)對(duì)激發(fā)學(xué)生的創(chuàng)新思維有著不可低估的作用。
三、仔細(xì)設(shè)計(jì)問題,激發(fā)學(xué)生猜想數(shù)學(xué)猜想是數(shù)學(xué)研究中合情的推理,是數(shù)學(xué)證明的前提.只有對(duì)數(shù)學(xué)問題的猜想,才會(huì)激發(fā)學(xué)生解決問題的興趣,啟迪學(xué)生的創(chuàng)造思維,從而發(fā)現(xiàn)問題、解決問題.數(shù)學(xué)猜想是在已有數(shù)學(xué)知識(shí)和數(shù)學(xué)事實(shí)的基礎(chǔ)上,對(duì)未知量及其規(guī)律做出的似真判斷,是科學(xué)假說在數(shù)學(xué)的體現(xiàn),它一旦得到論證便上升為數(shù)學(xué)理論.牛頓有一句名言:“沒有大膽的猜想,就做不出偉大的發(fā)現(xiàn).”數(shù)學(xué)家通過“提出問題—分析問題—作出猜想—檢驗(yàn)證明”,開拓新領(lǐng)域,創(chuàng)立新理論.在中學(xué)數(shù)學(xué)教學(xué)中,許多命題的發(fā)現(xiàn)、性質(zhì)的得出、思路的形成和方法的創(chuàng)造,都可以通過數(shù)學(xué)猜想而得到.通過猜想不僅有利于學(xué)生牢固地掌握知識(shí),也有利于培養(yǎng)他們的推理能力。
總之,數(shù)學(xué)教學(xué)中對(duì)學(xué)生進(jìn)行合情推理能力的培養(yǎng),對(duì)于我們教師,能提高教學(xué)效率,增加課堂教學(xué)的趣味性,優(yōu)化教學(xué)條件,提升教學(xué)水平和業(yè)務(wù)水平。對(duì)于學(xué)生,它不但能使學(xué)生學(xué)到知識(shí),會(huì)解決問題而且能使學(xué)掌握在新問題出現(xiàn)時(shí)該如何應(yīng)對(duì)的思想方法。
論文中心,作者:曾浩
本文來自:逍遙右腦記憶 http://yy-art.cn/chuzhong/307258.html
相關(guān)閱讀:如何突破初三數(shù)學(xué)期末壓軸題