解三角形

編輯: 逍遙路 關(guān)鍵詞: 高二 來源: 高中學(xué)習(xí)網(wǎng)
一、目標(biāo)
1、知識(shí)與技能:能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法進(jìn)一步解決有關(guān)三角形的問題, 掌握三角形的面積公式的簡(jiǎn)單推導(dǎo)和應(yīng)用
2、過程與方法:本節(jié)課補(bǔ)充了三角形新的面積公式,巧妙設(shè)疑,引導(dǎo)學(xué)生證明,同時(shí)總結(jié)出該公式的特點(diǎn),循序漸進(jìn)地具體運(yùn)用于相關(guān)的題型。另外本節(jié)課的證明題體現(xiàn)了前面所學(xué)知識(shí)的生動(dòng)運(yùn)用,教師要放手讓學(xué)生摸索,使學(xué)生在具體的論證中靈活把握正弦定理和余弦定理的特點(diǎn),能不拘一格,一題多解。只要學(xué)生自行掌握了兩定理的特點(diǎn),就能很快開闊思維,有利地進(jìn)一步突破難點(diǎn)。
3、情感態(tài)度與價(jià)值觀:讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),加深對(duì)所學(xué)定理的理解,提高創(chuàng)新能力;進(jìn)一步培養(yǎng)學(xué)生研究和發(fā)現(xiàn)能力,讓學(xué)生在探究中體驗(yàn)愉悅的成功體驗(yàn)
二、重點(diǎn):推導(dǎo)三角形的面積公式并解決簡(jiǎn)單的相關(guān)題目。
教學(xué)難點(diǎn):利用正弦定理、余弦定理來求證簡(jiǎn)單的證明題。
三、教學(xué)方法:探析歸納,講練結(jié)合
四、教學(xué)過程
Ⅰ.課題導(dǎo)入
[創(chuàng)設(shè)情境]
師:以前我們就已經(jīng)接觸過了三角形的面積公式,今天我們來學(xué)習(xí)它的另一個(gè)表達(dá)公式。在
ABC中,邊BC、CA、AB上的高分別記為h 、h 、h ,那么它們?nèi)绾斡靡阎吅徒潜硎荆?br />生:h =bsinC=csinB,h =csinA=asinC,h =asinB=bsinaA
師:根據(jù)以前學(xué)過的三角形面積公式S= ah,應(yīng)用以上求出的高的公式如h =bsinC代入,可以推導(dǎo)出下面的三角形面積公式,S= absinC,大家能推出其它的幾個(gè)公式嗎?
生:同理可得,S= bcsinA, S= acsinB
師:除了知道某條邊和該邊上的高可求出三角形的面積外,知道哪些條件也可求出三角形的面積呢?
生:如能知道三角形的任意兩邊以及它們夾角的正弦即可求解
Ⅱ.探析新課
[范例講解]
例1、在 ABC中,根據(jù)下列條件,求三角形的面積S(精確到0.1cm )(1)已知a=14.8cm,c=23.5cm,B=148.5 ;(2)已知B=62.7 ,C=65.8 ,b=3.16cm;(3)已知三邊的長分別為a=41.4cm,b=27.3cm,c=38.7cm
分析:這是一道在不同已知條件下求三角形的面積的問題,與解三角形問題有密切的關(guān)系,我們可以應(yīng)用解三角形面積的知識(shí),觀察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面積。
解:(1)應(yīng)用S= acsinB,得 S= 14.8 23.5 sin148.5 ≈90.9(cm )
(2)根據(jù)正弦定理, = ,c = ,S = bcsinA = b
A = 180 -(B + C)= 180 -(62.7 + 65.8 )=51.5
S = 3.16 ≈4.0(cm )
(3)根據(jù)余弦定理的推論,得cosB = = ≈0.7697
sinB = ≈ ≈0.6384應(yīng)用S= acsinB,得
S ≈ 41.4 38.7 0.6384≈511.4(cm )
例2、如圖,在某市進(jìn)行城市環(huán)境建設(shè)中,要把一個(gè)三角形的區(qū)域改造成室內(nèi)公園,經(jīng)過測(cè)量得到這個(gè)三角形區(qū)域的三條邊長分別為68m,88m,127m,這個(gè)區(qū)域的面積是多少?(精確到0.1cm )?
師:你能把這一實(shí)際問題化歸為一道數(shù)學(xué)題目嗎?
生:本題可轉(zhuǎn)化為已知三角形的三邊,求角的問題,再利用三角形的面積公式求解。
由學(xué)生解答,老師巡視并對(duì)學(xué)生解答進(jìn)行講評(píng)小結(jié)。
解:設(shè)a=68m,b=88m,c=127m,根據(jù)余弦定理的推論,cosB= = ≈0.7532,sinB= 0.6578應(yīng)用S= acsinB S ≈ 68 127 0.6578≈2840.38(m )
答:這個(gè)區(qū)域的面積是2840.38m 。
例3、在 ABC中,求證:(1) (2) + + =2(bccosA+cacosB+abcosC)
分析:這是一道關(guān)于三角形邊角關(guān)系恒等式的證明問題,觀察式子左右兩邊的特點(diǎn),聯(lián)想到用正弦定理來證明
證明:(1)根據(jù)正弦定理,可設(shè) = = = k,顯然 k 0,所以
左邊= = =右邊
(2)根據(jù)余弦定理的推論,
右邊=2(bc +ca +ab )
=(b +c - a )+(c +a -b )+(a +b -c )=a +b +c =左邊
變式練習(xí)1:已知在 ABC中, B=30 ,b=6,c=6 ,求a及 ABC的面積S
提示:解有關(guān)已知兩邊和其中一邊對(duì)角的問題,注重分情況討論解的個(gè)數(shù)。
答案:a=6,S=9 ;a=12,S=18
Ⅲ.課堂練習(xí):課本練習(xí)第1、2題
Ⅳ.課時(shí)小結(jié):利用正弦定理或余弦定理將已知條件轉(zhuǎn)化為只含邊的式子或只含角的三角函數(shù)式,然后化簡(jiǎn)并考察邊或角的關(guān)系,從而確定三角形的形狀。特別是有些條件既可用正弦定理也可用余弦定理甚至可以兩者混用。
Ⅴ.課后作業(yè):課本習(xí)題2-3 A組第12、14、15題

本文來自:逍遙右腦記憶 http://yy-art.cn/gaoer/74725.html

相關(guān)閱讀:莖葉圖