2013年廣州市高考備考沖刺階段數(shù)學(xué)學(xué)科訓(xùn)練材料
(理科)
說(shuō)明:
⒈ 本訓(xùn)練題由廣州市中學(xué)數(shù)學(xué)研究會(huì)高三中心組與廣州市高考數(shù)學(xué)研究組共同編寫,共24題.
⒉ 本訓(xùn)練題僅供本市高三學(xué)生考前沖刺訓(xùn)練用,希望在5月31日之前完成.
3.本訓(xùn)練題與市高三質(zhì)量抽測(cè)、一模、二模等數(shù)學(xué)試題在內(nèi)容上相互配套,互為補(bǔ)充.四套試題覆蓋了高中數(shù)學(xué)的主要知識(shí)和方法.因此,希望同學(xué)們?cè)?月31日至6月6日之間,安排一段時(shí)間,對(duì)這四套試題進(jìn)行一次全面的回顧總結(jié),同時(shí),將高中數(shù)學(xué)課本中的基本知識(shí)(如概念、定理、公式等)再?gòu)?fù)習(xí)一遍.x
希望同學(xué)們保持良好的心態(tài),在高考中穩(wěn)定發(fā)揮,考取理想的成績(jī)!
1.已知函數(shù) , 的最大值是1,其圖像經(jīng)過(guò)點(diǎn)
.
(1)求 的解析式;
(2)已知 ,且 , ,求 的值.
2. 設(shè)函數(shù) .
(1)若 是函數(shù) 的一個(gè)零點(diǎn),求 的值;
(2)若 是函數(shù) 的一個(gè)極值點(diǎn),求 的值.
3. 在 中,內(nèi)角 所對(duì)的邊長(zhǎng)分別是 , 已知 , .
(1)求 的值;
(2)若 為 的中點(diǎn),求 的長(zhǎng).
4. 一緝私艇發(fā)現(xiàn)在方位角(從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)45°方向,距離15 海里的海面上有一走私船正以25 海里/小時(shí)的速度沿方位角為105°的方向逃竄.若緝私艇的速度為35 海里/小時(shí),緝私艇沿方位角為45°+α的方向追去,若要在最短時(shí)間內(nèi)追上該走私船.
(1)求角α的正弦值;
(2)求緝私艇追上走私船所需的時(shí)間.
5. 某網(wǎng)站用“10分制”調(diào)查一社區(qū)人們的幸福度.現(xiàn)從調(diào)查人群中隨機(jī)抽取16名,以下莖葉圖記錄了他們的幸福度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)若幸福度不低于9.5分,則稱該人的幸福度為“極幸!.求從這16人中隨機(jī)選取3人,至多有1人是“極幸!钡母怕剩
(3)以這16人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記 表示抽到“極幸!钡娜藬(shù),求 的分布列及數(shù)學(xué)期望.
6.汽車是碳排放量比較大的行業(yè)之一.歐盟規(guī)定,從2014年開始,將對(duì) 排放量超過(guò)
的 型新車進(jìn)行懲罰.某檢測(cè)單位對(duì)甲、乙兩類 型品牌車各抽取 輛進(jìn)行
排放量檢測(cè),記錄如下(單位: ).
甲80110120140150
乙100120
160
經(jīng)測(cè)算發(fā)現(xiàn),乙品牌車 排放量的平均值為 .
(1)從被檢測(cè)的5輛甲類品牌車中任取2輛,則至少有一輛不符合 排放量的概率是多少?
(2)若 ,試比較甲、乙兩類品牌車 排放量的穩(wěn)定性.
7.隨機(jī)抽取某廠的某種產(chǎn)品200件,經(jīng)質(zhì)檢,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤(rùn)分別為6萬(wàn)元、2萬(wàn)元、1萬(wàn)元,而1件次品虧損2萬(wàn)元.設(shè)1件產(chǎn)品的利潤(rùn)(單位:萬(wàn)元)為 .
(1)求 的分布列;
(2)求1件產(chǎn)品的平均利潤(rùn)(即 的數(shù)學(xué)期望);
(3)經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為 ,一等品率提高為 .如果此時(shí)要求1件產(chǎn)品的平均利潤(rùn)不小于4.73萬(wàn)元,則三等品率最多是多少?
8.如圖,在四棱錐 中,底面為直角梯形, 底
面 , , 分別為 的中點(diǎn).
(1)求證: ;
(2)求 與平面 所成的角的正弦值.
9.一個(gè)三棱錐 的三視圖、直觀圖如圖.
(1)求三棱錐 的體積;
(2)求點(diǎn)C到平面SAB的距離;
10.如圖, 為圓 的直徑,點(diǎn) 、 在圓 上, ,矩形 所在的平面
和圓 所在的平面互相垂直,且 , .
(1)求證: 平面 ;
(2)設(shè) 的中點(diǎn)為 ,求證: 平面 ;
(3)設(shè)平面 將幾何體 分成的兩個(gè)錐體
的體積分別為 , ,求 .
11.已知等比數(shù)列 的公比 , ,且 、 、 成等差數(shù)列.
(1)求數(shù)列 的通項(xiàng)公式;
(2)設(shè) ,求數(shù)列 的前 項(xiàng)和 .
12.提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度 (單位:千米/小時(shí))是車流密度 (單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0 ;當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng) 時(shí),車流速度 是車流密度 的一次函數(shù).
(1)當(dāng) 時(shí),求函數(shù) 的表達(dá)式;
(2)當(dāng)車流密度 為多大時(shí),車流量 可以達(dá)到最大,并求出最大值(精確到1輛/小時(shí)). (車流量為單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí)) ,
第一年植樹100畝,以后每年比上一年多植樹50畝.
(1)若所植樹全部成活,則到哪一年可以將荒山全部綠化?
(2)若每畝所植樹苗木材量為2立方米,每年樹木木材量的自然增長(zhǎng)率
為20%,那么到全部綠化后的那一年年底,該山木材總量是多少?
(精確到1立方米, )
14. 已知拋物線 與雙曲線 有公共焦點(diǎn) ,點(diǎn)
是曲線 在第一象限的交點(diǎn),且 .
(1)求雙曲線 的方程;
(2)以雙曲線 的另一焦點(diǎn) 為圓心的圓 與直線 相切,圓 :
.過(guò)點(diǎn) 作互相垂直且分別與圓 、圓 相交的直線 和 ,設(shè) 被圓 截得的弦長(zhǎng)為 , 被圓 截得的弦長(zhǎng)為 . 是否為定值?請(qǐng)說(shuō)明理由.
15. 如圖,長(zhǎng)為m+1(m>0)的線段AB的兩個(gè)端點(diǎn)A和B分別在x軸和y軸上滑動(dòng),點(diǎn)M是線段AB上一點(diǎn),且→AM=m→MB.
(1)求點(diǎn)M的軌跡Γ的方程,并判斷軌跡Γ為何種圓錐曲線;
(2)設(shè)過(guò)點(diǎn)Q(12,0)且斜率不為0的直線交軌跡Γ于C、D兩點(diǎn).
試問(wèn)在x軸上是否存在定點(diǎn)P,使PQ平分∠CPD?若存在,求點(diǎn)P的坐標(biāo);
若不存在,請(qǐng)說(shuō)明理由.
16.已知數(shù)列 的前 項(xiàng)和的平均數(shù)為
(1)求 的通項(xiàng)公式;
(2)設(shè) ,試判斷并說(shuō)明 的符號(hào);
(3)設(shè)函數(shù) ,是否存在最大的實(shí)數(shù) ? 當(dāng) 時(shí),對(duì)于一切非零自然數(shù) ,都有
17. 數(shù)列 滿足 ,且 時(shí), ,
(1)求數(shù)列 的通項(xiàng)公式;
(2)設(shè)數(shù)列 的前 項(xiàng)和為 ,求證對(duì)任意的正整數(shù) 都有
(1)當(dāng) 時(shí),求函數(shù) 的值域;
(2)試討論函數(shù) 的單調(diào)性.
19.已知函數(shù) 的圖像在點(diǎn) 處的切線方程為 .
(1)用 表示出 ;
(2)若 在 上恒成立,求 的取值范圍;
(3)證明: .
20.如圖,已知直線 及曲線 上的點(diǎn) 的橫坐標(biāo)為 ( ).從曲線 上的點(diǎn) 作直線平行于 軸,交直線 作直線平行于 軸,交曲線 的橫坐標(biāo)構(gòu)成數(shù)列 .
(1)試求 的關(guān)系;
(2)若曲線 的平行于直線 的切線的切點(diǎn)恰好介于點(diǎn) 之間
(不與 重合),求 的取值范圍;
(3)若 ,求數(shù)列 的通項(xiàng)公式.
21. 已知函數(shù) 的導(dǎo)函數(shù)是 , 對(duì)任意兩個(gè)不相等
的正數(shù) , 證明: (1)當(dāng) 時(shí), ;
(2)當(dāng) 時(shí), .
22. 對(duì)于函數(shù) ,若存在 ∈R,使 成立,則稱 為 的不動(dòng)點(diǎn).
如果函數(shù) = 有且僅有兩個(gè)不動(dòng)點(diǎn)0和2.
(1)試求b、c滿足的關(guān)系式;
(2)若c=2時(shí),各項(xiàng)不為零的數(shù)列{an}滿足4Sn? =1,
求證: < < ;
(3)在(2)的條件下, 設(shè)bn=- , 為數(shù)列{bn}的前n項(xiàng)和,
求證: .
23.已知定義在 上的單調(diào)函數(shù) ,存在實(shí)數(shù) ,使得對(duì)于任意實(shí)數(shù) ,總有 恒成立.
(1)求 的值;
(2)若 ,且對(duì)任意正整數(shù) ,有 ,
記 ,比較 與 的大小關(guān)系,并給出證明.
24. 已知函數(shù) ,設(shè) 在點(diǎn) N*)處的切線在 軸上的截距為 ,數(shù)列 滿足: N*).
(1)求數(shù)列 的通項(xiàng)公式;
(2)在數(shù)列 中,僅當(dāng) 時(shí), 取最小值,求 的取值范圍;
(3)令函數(shù) ,數(shù)列 滿足: , N*),
求證:對(duì)于一切 的正整數(shù),都滿足: .
2013年廣州市高考備考沖刺階段數(shù)學(xué)學(xué)科(理科)訓(xùn)練材料參考答案
1.解:(1)依題意有 ,則 ,將點(diǎn) 代入得 ,
而 , , ,故 .
(2)依題意有 ,而 ,
,
.
2. 解:(1) 是函數(shù) 的一個(gè)零點(diǎn), ∴ , 從而 .
∴
(2) , 是函數(shù) 的一個(gè)極值點(diǎn)
∴ , 從而 .
∴ .
3. 解:(1) 且 ,∴ .
∴
.
(2)由(1)可得 .
由正弦定理得 ,即 ,解得 .
在 中, , ,∴ .
4. 解:(1)設(shè)緝私艇追上走私船所需的時(shí)間為t小時(shí),
則有BC=25t,AB=35t,
且∠CAB=α,∠ACB=120°,
根據(jù)正弦定理得: ,
即 , ∴ sinα= .
(2)在△ABC中由余弦定理得:AB2=AC2+BC2-2ACBCcos∠ACB,
即 (35t)2=152+(25t)2-2?15?25t?cos120°,即24t2?15t?9=0,
解之得:t=1或t=- (舍)
故緝私艇追上走私船需要1個(gè)小時(shí)的時(shí)間.
5.解:(1)眾數(shù):8.6;中位數(shù):8.75
(2)設(shè) 表示所取3人中有 個(gè)人是“極幸!,至多有1人是“極幸!庇洖槭录 ,則
(3) 的可能取值為0、1、2、3.
;
;
高考資源網(wǎng)
所以 .
另解: 的可能取值為0、1、2、3.高..考.資., 則 , .
的分布列為
所以 = .
6. 解:(1)從被檢測(cè)的 輛甲類品牌車中任取 輛,共有 種不同的 排放量結(jié)果:
( );( );( );( );( );
( );( );( );( );( ).
設(shè)“至少有一輛不符合 排放量”為事件 ,則事件 包含以下 種不同的結(jié)果:
( );( );( );( );( );( );( ).
所以, . 答:至少有一輛不符合 排放量的概率為
(2)由題可知, , .
, ,∴乙類品牌車碳排放量的穩(wěn)定性好.
7.解(1) 的所有可能取值有6,2,1,-2; ,
,
故 的分布列為:
621-2
0.630.250.10.02
(2)
(3)設(shè)技術(shù)革新后的三等品率為 ,則此時(shí)1件產(chǎn)品的平均利潤(rùn)為
依題意, ,即 ,解得 所以三等品率最多為 .
8.(1)解法1:∵ 是 的中點(diǎn), ,∴ .
∵ 平面 ,所以 .
又 , ,∴ , .
又 ,∴ 平面 .
∵ 平面 ,∴ .
解法2:如圖,以 為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系 ,設(shè) ,
可得, .
因?yàn)?,所以 .
(2)因?yàn)?.
所以 ,又 ,所以 平面 ,
因此 的余角即是 與平面 所成的角.
因?yàn)?.
所以 與平面 所成的角的正弦值為 .
9. 解: (1)由正視圖、俯視圖知 ;
由正視圖、側(cè)視圖知,點(diǎn)B在平面SAC上的正投影為AC的中點(diǎn)D,則 ,
平面 , ;
由俯視圖、側(cè)視圖知,點(diǎn)S在平面ABC上的正投影為DC的中點(diǎn)O,
則 , 平面 , .如圖.
(1)三棱錐 的體積 .
解法一:
以O(shè)為原點(diǎn),OA為 軸,過(guò)O且平行于BD的直線為 軸,OS為 軸,建立如圖空間直角坐標(biāo)系,可求 , ,
設(shè) 是平面SAB的一個(gè)法向量,則
,取 ,
(2)可知 ,設(shè)點(diǎn)C到平面SAB的距離為 ,
則 .
(3)可知 是平面ABC一個(gè)法向量,故 ,
二面角 的余弦值為 .
解法二:
(2)可求 , ,
,
△SAB的面積 ,
設(shè)點(diǎn)C到平面SAB的距離為 ,
由三棱錐 的體積 ,
得 .
(3)作 于H,作 交AB于E,則 ,
連接SE,因OE是SE在底面ABC內(nèi)的射影,而 ,故 ,
為二面角 的平面角.
△ABC中,易求 ,
由△ABC的面積, , ,
△AEO與△AHC相似,相似比為AO:AC=3:4,故 ,
中, ,
故 ,二面角 的余弦值為 .
10.(1)證明: 平面 平面 , ,
平面 平面 = ,
平面 ,
平面 , ,
為圓 的直徑, , 平面 .
(2)設(shè) 的中點(diǎn)為 ,則 ,又 ,
則 , 為平行四邊形,
,又 平面 , 平面 , 平面 .
(3)過(guò)點(diǎn) 作 于 , 平面 平面 ,
平面 , ,
平面 ,
,
.
11.解:(1)因?yàn)?、 、 成等差數(shù)列,
所以 ,即 .
因?yàn)?, ,所以 ,即 .
因?yàn)?,所以 .所以 .
所以數(shù)列 的通項(xiàng)公式為 .
(2)因?yàn)?,所以 .
所以
當(dāng) 時(shí),
;
當(dāng) 時(shí),
.
綜上所述,
12. 解:(1)由題意,當(dāng) 時(shí), 當(dāng) 時(shí),設(shè)
由已知得 解得 . .
(2)依題意得
當(dāng) 時(shí), 為增函數(shù),故 .
當(dāng) 時(shí), 時(shí), 取最大值 .
答:車流密度 為100時(shí),車流量 達(dá)到最大值3333.
13.解:(1)設(shè)植樹 年后可將荒山全部綠化,記第 年初植樹量為 ,
依題意知數(shù)列 是首項(xiàng) ,公差 的等差數(shù)列,
則 , 即
∵ ∴
∴到2009年初植樹后可以將荒山全部綠化.
(2)2002年初木材量為 ,到2009年底木材量增加為 ,
2003年初木材量為 ,到2009年底木材量增加為 ,……
2009年初木材量為 ,到2009年底木材量增加為 .
則到2009年底木材總量
----------①
---------②
②-①得
∴ m2
答:到全部綠化后的那一年年底,該山木材總量為9060m2
14. 解:(1)∵拋物線 的焦點(diǎn)為 ,
∴雙曲線 的焦點(diǎn)為 、 ,
設(shè) 在拋物線 上,且 ,
由拋物線的定義得, ,∴ ,∴ ,∴ ,
∴ ,又∵點(diǎn) 在雙曲線 上,由雙曲線定義得,
,∴ , ∴雙曲線 的方程為: .
(2) 為定值.下面給出說(shuō)明.
設(shè)圓 的方程為: , ∵圓 與直線 相切,
∴圓 的半徑為 ,故圓 : .
顯然當(dāng)直線 的斜率不存在時(shí)不符合題意,
設(shè) 的方程為 ,即 ,
設(shè) 的方程為 ,即 ,
∴點(diǎn) 到直線 的距離為 ,點(diǎn) 到直線 的距離為 ,
∴直線 被圓 截得的弦長(zhǎng) ,
直線 被圓 截得的弦長(zhǎng) ,
∴ , 故 為定值 .
15. 解:(1)設(shè)A、B、M的坐標(biāo)分別為(x0,0)、(0,y0)、(x,y),則
x20+y20=(m+1)2, ①
由→AM=m→MB,得(x-x0,y)=m(-x,y0-y),
∴x-x0=-mx,y=m(y0-y).∴x0=(m+1)x,y0=m+1my. ②
將②代入①,得
(m+1)2x2+(m+1m)2y2=(m+1)2,
化簡(jiǎn)即得點(diǎn)M的軌跡Γ的方程為x2+y2m2=1(m>0).
當(dāng)0<m<1時(shí),軌跡Γ是焦點(diǎn)在x軸上的橢圓;
當(dāng)m=1時(shí),軌跡Γ是以原點(diǎn)為圓心,半徑為1的圓;
當(dāng)m>1時(shí),軌跡Γ是焦點(diǎn)在y軸上的橢圓.
(2)依題意,設(shè)直線CD的方程為x=ty+12,
由x=ty+12,x2+y2m2=1.消去x并化簡(jiǎn)整理,得(m2t2+1)y2+m2ty-34m2=0,
△=m4t2+3m2(m2t2+1)>0,
設(shè)C(x1,y1),D(x2,y2),則
y1+y2=-m2tm2t2+1,y1y2=-3m24(m2t2+1). ③
假設(shè)在x軸上存在定點(diǎn)P(a,0),使PQ平分∠CPD,
則直線PC、PD的傾斜角互補(bǔ),
∴kPC+kPD=0,即y1x1-a+y2x2-a=0,
∵x1=ty1+12,x2=ty2+12,∴y1ty1+12-a+y2ty2+12-a=0,
化簡(jiǎn),得4ty1y2+(1-2a)( y1+y2)=0. ④
將③代入④,得-3m2tm2t2+1-m2t(1-2a)m2t2+1=0,即-2m2t(2-a)=0,
∵m>0,∴t(2-a)=0,∵上式對(duì)?t∈R都成立,∴a=2.
故在x軸上存在定點(diǎn)P(2,0),使PQ平分∠CPD.
16.解:(1)由題意, ,兩式相減得 ,而 ,
(2) ,
(3)由(2)知 是數(shù)列 的最小項(xiàng).
當(dāng) 時(shí),對(duì)于一切非零自然數(shù) ,都有 ,
即 ,即 ,
解得 或 , 取 .
17. 解:(1) ,則 則
(2) 由于 ,因此,
又
所以從第二項(xiàng)開始放縮:
因此
18.解:(1) ,
當(dāng) 時(shí), ,即 時(shí), 最小值為2.
當(dāng) 時(shí), ,在 上單調(diào)遞增,所以 .
所以 時(shí), 的值域?yàn)?.
(2)依題意得
①若 ,當(dāng) 時(shí), , 遞減,當(dāng) 時(shí), , 遞增.
②若 ,當(dāng) 時(shí),令 ,解得 ,
當(dāng) 時(shí), , 遞減,當(dāng) 時(shí), , 遞增.
當(dāng) 時(shí), , 遞增.
③若 ,當(dāng) 時(shí), , 遞減.
當(dāng) 時(shí),解 得 ,
當(dāng) 時(shí), , 遞增,
當(dāng) 時(shí), , 遞減.
④ ,對(duì)任意 , , 在 上遞減.
綜上所述,當(dāng) 時(shí), 在 或 上單調(diào)遞增,在 上單調(diào)遞減;
當(dāng) 時(shí), 在 上單調(diào)遞增,在 上單調(diào)遞減;
當(dāng) 時(shí), 在 上單調(diào)遞增,在 , 上單調(diào)遞減;
當(dāng) 時(shí), 在 上單調(diào)遞減.
19. 解:(1) 則有 .
(2)由(1)得
令 ,
①當(dāng) 時(shí), .若 , 是減函數(shù),∴ ,即 故 在 不恒成立.
②當(dāng) 時(shí), .若 , 是增函數(shù),∴ ,
即 故 時(shí) .綜上所述, 的取值范圍是 .
(3)由(2)知,當(dāng) 時(shí),有 .令 ,則 即當(dāng) 時(shí),總有 令 ,則 .將上述 個(gè)不等式累加得 整理得
20.解:(1)因?yàn)辄c(diǎn) 的坐標(biāo)為 , 的坐標(biāo)為 ,
所以點(diǎn) 的坐標(biāo)為 ,則 故 的關(guān)系為
(2)設(shè)切點(diǎn)為 ,則 得 ,所以
解不等式 得 .
.
的取值范圍是
(3) 由 得 ,即 ,故
,
所以數(shù)列 是以2為公比,首項(xiàng)為 的等比數(shù)列, 即 解得 ,
數(shù)列 的通項(xiàng)公式為 .
21. 略解:(1)
.
,
而 ,
又 ,得 ,
又 ,得 ,由于 ,故 .
所以 .
所以 .
(2) ,故
,
下面證明: 成立.
法1: .
令 ,則 ,
可知 .即 .
法2: 即
由于 .
令 ,則 ,可知 .
故 成立.
22. 解: (1)設(shè)
∴
(2)∵c=2 ∴b=2 ∴ ,
由已知可得2Sn=an-an2……①,且an ≠ 1.
當(dāng)n ≥ 2時(shí),2 Sn -1=an-1- ……②,
①-②得(an+an-1)( an-an-1+1)=0,
∴an=-an-1 或 an=-an-1 =-1,
當(dāng)n=1時(shí),2a1=a1-a12 a1=-1,
若an=-an-1,則a2=1與an ≠ 1矛盾.∴an-an-1=-1, ∴an=-n.
∴要證不等式,只要證 ,即證 ,
只要證 ,即證 .
考慮證不等式 (x>0) . (**)
令g(x)=x-ln(1+x), h(x)=ln(x+1)- (x>0) .
∴ = , = ,
∵x>0, ∴ >0, >0,∴g(x)、h(x)在(0, +∞)上都是增函數(shù),
∴g(x)>g(0)=0, h(x)>h(0)=0,∴x>0時(shí), .
令 則(**)式成立,∴ < < ,
(3)由(2)知bn= ,則Tn= .
在 中,令n=1,2,3, ,2008,并將各式相加,
得 ,
即T2009-1<ln2009<T2008.
23.解:(1)令 ,得 ,
……①,
令 得 .
……②
由①、②,得 .
為單調(diào)函數(shù), .
(2)由(1)得
.
24.解:(1) ,則 ,
得 ,即 ,
∴數(shù)列 是首項(xiàng)為2、公差為1的等差數(shù)列,∴ ,即 .
(2) ,∴函數(shù) 在點(diǎn) N*)處的切線方程為:
,令 ,得 .
,僅當(dāng) 時(shí)取得最小值,
只需 ,解得 ,故 的取值范圍為 .
(3) ,故 ,
,故 ,則 ,即 .
∴
= .
又 ,
故 .
本文來(lái)自:逍遙右腦記憶 http://www.yy-art.cn/gaosan/66045.html
相關(guān)閱讀:2014高三數(shù)學(xué)一診模擬考試文科試題(含答案)