【摘要】高三的同學們正在第一輪的復習階段,小編為同學們整理了數(shù)學答題策略,供大家參考,大家要好好復習哦。
一、歷年高考數(shù)學試卷的啟發(fā)
1.試卷上有參考公式,80%是有用的,它為你的解題指引了方向;
2.解答題的各小問之間有一種階梯關系,通常后面的問要使用前問的結論。如果前問是證明,即使不會證明結論,該結論在后問中也可以使用。當然,我們也要考慮結論的獨立性;
3.注意題目中的小括號括起來的部分,那往往是解題的關鍵;
二、答題策略選擇
1.先易后難是所有科目應該遵循的原則,而數(shù)學卷上顯得更為重要。一般來說,選擇題的后兩題,填空題的后一題,解答題的后兩題是難題。當然,對于不同的學生來說,有的簡單題目也可能是自己的難題,所以題目的難易只能由自己確定。一般來說,小題思考1分鐘還沒有建立解答方案,則應采取“暫時性放棄”,把自己可做的題目做完再回頭解答;
2.選擇題有其獨特的解答方法,首先重點把握選擇支也是已知條件,利用選擇支之間的關系可能使你的答案更準確。切記不要“小題大做”。注意解答題按步驟給分,根據(jù)題目的已知條件與問題的聯(lián)系寫出可能用到的公式、方法、或是判斷。雖然不能完全解答,但是也要把自己的想法與做法寫到答卷上。多寫不會扣分,寫了就可能得分。
三、答題思想方法
1.函數(shù)或方程或不等式的題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2.如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結合的思想方法;
3.面對含有參數(shù)的初等函數(shù)來說,在研究的時候應該抓住參數(shù)沒有影響到的不變的性質(zhì)。如所過的定點,二次函數(shù)的對稱軸或是……;
4.選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;
5.求參數(shù)的取值范圍,應該建立關于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法;
6.恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的應用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應該不重復不遺漏;
7.圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關,選擇設而不求點差法,與弦的中點無關,選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式;
8.求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設點、列式、化簡(注意去掉不符合條件的特殊點);
9.求橢圓或是雙曲線的離心率,建立關于a、b、c之間的關系等式即可;
10.三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍;
本文來自:逍遙右腦記憶 http://yy-art.cn/gaozhong/209730.html
相關閱讀:高考文科數(shù)學必背公式有哪些