(1)掌握圓的標準方程,能根據(jù)圓心坐標和半徑熟練地寫出圓的標準方程,也能根據(jù)圓的標準方程熟練地寫出圓的圓心坐標和半徑.
(2)掌握圓的一般方程,了解圓的一般方程的結(jié)構(gòu)特征,熟練掌握圓的標準方程和一般方程之間的互化.
(3)了解參數(shù)方程的概念,理解圓的參數(shù)方程,能夠進行圓的普通方程與參數(shù)方程之間的互化,能應(yīng)用圓的參數(shù)方程解決有關(guān)的簡單問題.
(4)掌握直線和圓的位置關(guān)系,會求圓的切線.
(5)進一步理解曲線方程的概念、熟悉求曲線方程的 高中數(shù)學(xué).
教學(xué)建議
教材分析
(1)結(jié)構(gòu)
(2)重點、難點分析
、俦竟(jié)內(nèi)容教學(xué)的重點是圓的標準方程、一般方程、參數(shù)方程的推導(dǎo),根據(jù)條件求圓的方程,用圓的方程解決相關(guān)問題.
、诒竟(jié)的難點是圓的一般方程的結(jié)構(gòu)特征,以及圓方程的求解和應(yīng)用.
教法建議
(1)圓是最簡單的曲線.這節(jié)教材安排在了曲線方程概念和求曲線方程之后,三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼做好準備.同時,有關(guān)圓的問題,特別是直線與圓的位置關(guān)系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學(xué)中應(yīng)加強練習(xí),使確實掌握這一單元的知識和方法.
(2)在解決有關(guān)圓的問題的過程中多次用到配方法、待定系數(shù)法等思想方法,教學(xué)中應(yīng)多總結(jié).
(3)解決有關(guān)圓的問題,要經(jīng)常用到一元二次方程的理論、平面幾何知識和前邊學(xué)過的解析幾何的基本知識,在教學(xué)中要注意多、多運用,培養(yǎng)學(xué)生運算和簡化運算過程的意識.
(4)有關(guān)圓的內(nèi)容非常豐富,有很多有價值的問題.建議適當選擇一些內(nèi)容供學(xué)生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.
本文來自:逍遙右腦記憶 http://yy-art.cn/gaozhong/68724.html
相關(guān)閱讀:高中數(shù)學(xué)教學(xué)中學(xué)生思維能力的培養(yǎng)