M
2013中考全國100份試卷分類匯編
菱形
1、(綿陽市2013年)如圖,四邊形ABCD是菱形,對角線AC=8cm,BD=6cm,DH⊥AB于點H,且DH與AC交于G,則GH=( B )
A. B. C. D.
[解析]OA=4,OB=3,AB=5,△BDH∽△BOA,
BD/AB=BH/OB=DH/OA,6/5=BH/3,BH=18/5,
AH=AB-BH=5-18/5=7/5,△AGH∽△ABO,
GH/BO=AH/AO,GH/3=7/5 / 4,GH=21/20。
2、(2013•曲靖)如圖,在▱ABCD中,對角線AC與BD相交于點O,過點O作EF⊥AC交BC于點E,交AD于點F,連接AE、CF.則四邊形AECF是( 。
A.梯形B.矩形C.菱形D.正方形
考點:菱形的判定;平行四邊形的性質(zhì).
分析:首先利用平行四邊形的性質(zhì)得出AO=CO,∠AFO=∠CEO,進而得出△AFO≌△CEO,再利用平行四邊形和菱形的判定得出即可.
解答:解:四邊形AECF是菱形,
理由:∵在▱ABCD中,對角線AC與BD相交于點O,
∴AO=CO,∠AFO=∠CEO,
∴在△AFO和△CEO中
,
∴△AFO≌△CEO(AAS),
∴FO=EO,
∴四邊形AECF平行四邊形,
∵EF⊥AC,
∴平行四邊形AECF是菱形.
故選:C.
點評:此題主要考查了菱形的判定以及平行四邊形的判定與性質(zhì),根據(jù)已知得出EO=FO是解題關鍵.
3、(2013涼山州)如圖,菱形ABCD中,∠B=60°,AB=4,則以AC為邊長的正方形ACEF的周長為( 。
A.14B.15C.16D.17
考點:菱形的性質(zhì);等邊三角形的判定與性質(zhì);正方形的性質(zhì).
分析:根據(jù)菱形得出AB=BC,得出等邊三角形ABC,求出AC,長,根據(jù)正方形的性質(zhì)得出AF=EF=EC=AC=4,求出即可.
解答:解:∵四邊形ABCD是菱形,
∴AB=BC,
∵∠B=60°,
∴△ABC是等邊三角形,
∴AC=AB=4,
∴正方形ACEF的周長是AC+CE+EF+AF=4×4=16,
故選C.
點評:本題考查了菱形性質(zhì),正方形性質(zhì),等邊三角形的性質(zhì)和判定的應用,關鍵是求出AC的長.
4、(2012•瀘州)如圖,菱形ABCD的兩條對角線相交于O,若AC=6,BD=4,則菱形ABCD的周長是( )
A.24B.16C.4 D.2
考點:菱形的性質(zhì);勾股定理.
分析:由菱形ABCD的兩條對角線相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA與OB的長,然后利用勾股定理,求得AB的長,繼而求得答案.
解答:解:∵四邊形ABCD是菱形,AC=6,BD=4,
∴AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,
∴在Rt△AOB中,AB= = ,
∴菱形的周長是:4AB=4 .
故選C.
點評:此題考查了菱形的性質(zhì)與勾股定理.此題難度不大,注意掌握數(shù)形結合思想的應用.
5、(2013菏澤)如圖,把一個長方形的紙片對折兩次,然后剪下一個角,為了得到一個鈍角為120° 的菱形,剪口與第二次折痕所成角的度數(shù)應為( 。
A.15°或30°B.30°或45°C.45°或60°D.30°或60°
考點:剪紙問題.
分析:折痕為AC與BD,∠BAD=120°,根據(jù)菱形的性質(zhì):菱形的對角線平分對角,可得∠ABD=30°,易得∠BAC=60°,所以剪口與折痕所成的角a的度數(shù)應為30°或60°.
解答:解:∵四邊形ABCD是菱形,
∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,
∵∠BAD=120°,
∴∠ABC=180°?∠BAD=180°?120°=60°,
∴∠ABD=30°,∠BAC=60°.
∴剪口與折痕所成的角a的度數(shù)應為30°或60°.
故選D.
點評:此題主要考查菱形的判定以及折疊問題,關鍵是熟練掌握菱形的性質(zhì):菱形的對角線平分每一組對角.
6、(2013•玉林)如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:
甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據(jù)兩人的作法可判斷( 。
A.甲正確,乙錯誤B.乙正確,甲錯誤C.甲、乙均正確D.甲、乙均錯誤
考點:菱形的判定.3718684
分析:首先證明△AOM≌△CON(ASA),可得MO=NO,再根據(jù)對角線互相平分的四邊形是平行四邊形可判定判定四邊形ANCM是平行四邊形,再由AC⊥MN,可根據(jù)對角線互相垂直的四邊形是菱形判定出ANCM是菱形;四邊形ABCD是平行四邊形,可根據(jù)角平分線的定義和平行線的定義,求得AB=AF,所以四邊形ABEF是菱形.
解答: 解:甲的作法正確;
∵四邊形 ABCD是平行四邊形,
∴AD∥BC,
∴∠DAC=∠ACN,
∵MN是AC的垂直平分線,
∴AO=CO,
在△AOM和△CON中 ,
∴△AOM≌△CON(ASA),
∴MO=NO,
∴四邊形ANCM是平行四邊形,
∵AC⊥MN,
∴四邊形ANCM是菱形;
乙的作法正確;
∵AD∥BC,
∴∠1=∠2,∠6=∠7,
∵BF平分∠ABC,AE平分∠BAD,
∴∠2=∠3,∠5=∠6,
∴∠1=∠3,∠5=∠7,
∴AB=AF,AB=BE,
∴AF=BE
∵AF∥BE,且AF=BE,
∴四邊形ABEF是平行四邊形,
∵AB=AF,
∴平行四邊形ABEF是菱形;
故選:C.
點評:此題主要考查了菱形形的判定,關鍵是掌握菱形的判定方法:①菱形定義:一組鄰邊相等的平行四邊形是菱形(平行四邊形+一組鄰邊相等=菱形);
②四條邊都相等的四邊形是菱形.
③對角線互相垂直的平行四邊形是菱形(或“對角線互相垂直平分的四邊形是菱形”).
7、(2013年濰坊市)如圖,ABCD是對角線互相垂直的四邊形,且OB=OD,請你添加一個適當?shù)臈l件 ____________,使ABCD成為菱形.(只需添加一個即可)
答案:OA=OC或AD=BC或AD//BC或AB=BC等
考點:菱形的判別方法.
點評:此題屬于開放題型,答案不唯一.主要考查了菱形的判定,關鍵是掌握菱形的判定定理.
5 Y
本文來自:逍遙右腦記憶 http://yy-art.cn/chusan/134067.html
相關閱讀: