當(dāng)兩條不同的直線有一個(gè)公共點(diǎn)時(shí),就稱這兩條直線相交,這個(gè)公共點(diǎn)叫做它們的交點(diǎn)。
相交線性質(zhì):
∠1和∠2有一條公共邊OC,它們的另一邊互為反向延長線(∠1和∠2互補(bǔ)),具有這種關(guān)系的兩個(gè)角,互為鄰補(bǔ)角。
∠1和∠3有一個(gè)公共頂點(diǎn)O,并且∠1的兩邊分別是∠3的兩邊的反向延長線,具有這種位置關(guān)系的兩個(gè)角,互為對頂角。
∠1與∠2互補(bǔ),∠3與∠2互補(bǔ),由“同角的補(bǔ)角相等”,可以得出∠1=∠3.類似地,∠2=∠4.這樣,
我們得到了對頂角的性質(zhì):對頂角相等。
垂線:
垂直是相交的一種特殊情形,兩條直線互相垂直,其中的一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。
經(jīng)過一點(diǎn)(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
過一點(diǎn)有且只有一條直線與已知直線垂直。
連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短.
簡單說成:垂線段最短。
直線外一點(diǎn)到這條直線的垂線段的長度,叫做點(diǎn)到直線的距離。
本文來自:逍遙右腦記憶 http://yy-art.cn/chuzhong/564566.html
相關(guān)閱讀:新課程視野下初中數(shù)學(xué)作業(yè)設(shè)計(jì)的研究