高一數(shù)學(xué)上冊(cè)練習(xí)冊(cè)答案:第一章集合與函數(shù)概念

編輯: 逍遙路 關(guān)鍵詞: 高一 來(lái)源: 高中學(xué)習(xí)網(wǎng)

【導(dǎo)語(yǔ)】讓我們共同努力,培養(yǎng)良好的學(xué)習(xí)習(xí)慣,胸懷夢(mèng)想,珍惜時(shí)間,發(fā)奮學(xué)習(xí),立志成才,讓青春載著夢(mèng)想飛揚(yáng)!這篇關(guān)于《高一數(shù)學(xué)上冊(cè)練習(xí)冊(cè)答案:章集合與函數(shù)概念》是逍遙右腦為你準(zhǔn)備的,希望你喜歡!

  1.1集合

  111集合的含義與表示

  1.D.2.A.3.C.4.1,-1.5.x.6.2,0,-2.

  7.A=(1,5),(2,4),(3,3),(4,2),(5,1).8.1.9.1,2,3,6.

  10.列舉法表示為(-1,1),(2,4),描述法的表示方法不,如可表示為(x,y)|y=x+2,

  y=x2.

  11.-1,12,2.

  112集合間的基本關(guān)系

  1.D.2.A.3.D.4.,-1,1,-1,1.5..6.①③⑤.

  7.A=B.8.15,13.9.a≥4.10.A={,1,2,1,2},B∈A.

  11.a=b=1.

  113集合的基本運(yùn)算(一)

  1.C.2.A.3.C.4.4.5.x.6.4.7.-3.

  8.A∪B=x<3,或x≥5.9.A∪B=-8,-7,-4,4,9.10.1.

  11.{a|a=3,或-22

  113集合的基本運(yùn)算(二)

  1.A.2.C.3.B.4.x.5.2或8.6.x|x=n+12,n∈Z.

  7.-2.8.x>6,或x≤2.9.A=2,3,5,7,B=2,4,6,8.

  10.A,B的可能情形有:A=1,2,3,B=3,4;A=1,2,4,B=3,4;A=1,2,3,4,B=3,4.

  11.a=4,b=2.提示:∵A∩?UB=2,∴2∈A,∴4+2a-12=0a=4,∴A=x=2,-6,∵A∩?UB=2,∴-6?UB,∴-6∈B,將x=-6代入B,得b2-6b+8=0b=2,或b=4.①當(dāng)b=2時(shí),B=x2+2x-24=0=-6,4,∴-6?UB,而2∈?UB,滿足條件A∩?UB=2.②當(dāng)b=4時(shí),B=x=-6,2,

  ∴2?UB,與條件A∩?UB=2矛盾.

  1.2函數(shù)及其表示

  121函數(shù)的概念(一)

  1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).

  7.(1)12,34.(2)x≠-1,且x≠-3.8.-34.9.1.

  10.(1)略.(2)72.11.-12,234.

  121函數(shù)的概念(二)

  1.C.2.A.3.D.4.x≠0,且x≠-1.5.[0,+∞).6.0.

  7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).

  9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).

  122函數(shù)的表示法(一)

  1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.

  8.

  x1234y828589889.略.10.1.11.c=-3.

  122函數(shù)的表示法(二)

  1.C.2.D.3.B.4.1.5.3.6.6.7.略.

  8.f(x)=2x(-1≤x<0),

  -2x+2(0≤x≤1).

  9.f(x)=x2-x+1.提示:設(shè)f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展開得2ax+(a+b)=2x,所以2a=2,

  a+b=0,解得a=1,b=-1.

  10.y=1.2(0

  2.4(20

  3.6(40

  4.8(60

  1.3函數(shù)的基本性質(zhì)

  131單調(diào)性與(小)值(一)

  1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k<12.

  7.略.8.單調(diào)遞減區(qū)間為(-∞,1),單調(diào)遞增區(qū)間為[1,+∞).9.略.10.a≥-1.

  11.設(shè)-10,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函數(shù)y=f(x)在(-1,1)上為減函數(shù).

  131單調(diào)性與(小)值(二)

  1.D.2.B.3.B.4.-5,5.5.25.

  6.y=316(a+3x)(a-x)(0

  11.日均利潤(rùn),則總利潤(rùn)就.設(shè)定價(jià)為x元,日均利潤(rùn)為y元.要獲利每桶定價(jià)必須在12元以上,即x>12.且日均銷售量應(yīng)為440-(x-13)·40>0,即x<23,總利潤(rùn)y=(x-12)[440-(x-13)·40]-600(12

  132奇偶性

  1.D.2.D.3.C.4.0.5.0.6.答案不,如y=x2.

  7.(1)奇函數(shù).(2)偶函數(shù).(3)既不是奇函數(shù),又不是偶函數(shù).(4)既是奇函數(shù),又是偶函數(shù).

  8.f(x)=x(1+3x)(x≥0),

  x(1-3x)(x<0).9.略.

  10.當(dāng)a=0時(shí),f(x)是偶函數(shù);當(dāng)a≠0時(shí),既不是奇函數(shù),又不是偶函數(shù).

  11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<32b-32b<00

  單元練習(xí)

  1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.

  10.D.11.0,1,2.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].

  15.f12

  17.T(h)=19-6h(0≤h≤11),

  -47(h>11).18.0≤x≤1.

  19.f(x)=x只有的實(shí)數(shù)解,即xax+b=x(*)只有實(shí)數(shù)解,當(dāng)ax2+(b-1)x=0有相等的實(shí)數(shù)根x0,且ax0+b≠0時(shí),解得f(x)=2xx+2,當(dāng)ax2+(b-1)x=0有不相等的實(shí)數(shù)根,且其中之一為方程(*)的增根時(shí),解得f(x)=1.

  20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以該函數(shù)是偶函數(shù).(2)略.(3)單調(diào)遞增區(qū)間是[-1,0],[1,+∞),單調(diào)遞減區(qū)間是(-∞,-1],[0,1].

  21.(1)f(4)=4×13=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1.3+1×3.9+0.5×65=13.65.

  (2)f(x)=1.3x(0≤x≤5),

  3.9x-13(5

  6.5x-28.6(6

  22.(1)值域?yàn)閇22,+∞).(2)若函數(shù)y=f(x)在定義域上是減函數(shù),則任取x1,x2∈(0,1]且x1f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范圍是(-∞,-2).


本文來(lái)自:逍遙右腦記憶 http://yy-art.cn/gaoyi/1185110.html

相關(guān)閱讀:高一年級(jí)下冊(cè)數(shù)學(xué)暑假作業(yè)答案及解析