如何培養(yǎng)學(xué)生的數(shù)學(xué)思維能力

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)

  一、中學(xué)數(shù)學(xué)教學(xué)中學(xué)生思維能力培養(yǎng)的重要意義

  思維是人腦對(duì)客觀現(xiàn)實(shí)的概括和間接的反映,反映的是事物的本質(zhì)及內(nèi)部的規(guī)律性.所謂數(shù)學(xué)教學(xué)中實(shí)現(xiàn)學(xué)生思維能力的培養(yǎng),是指學(xué)生在對(duì)數(shù)學(xué)感知認(rèn)識(shí)的基礎(chǔ)上,運(yùn)用比較、分析、綜合、歸納、演繹等思維的基本方法,理解并掌握數(shù)學(xué)內(nèi)容而且能對(duì)具體的數(shù)學(xué)問題進(jìn)行推論與判斷,從而或得對(duì)數(shù)學(xué)知識(shí)本質(zhì)和規(guī)律的認(rèn)識(shí)能力.?dāng)?shù)學(xué)思維雖然并非總等于解題,但我們可以這樣講,中學(xué)生數(shù)學(xué)思維的形成是建立在對(duì)中學(xué)數(shù)學(xué)基本概念、公式、定理理解的基礎(chǔ)上的;發(fā)展學(xué)生數(shù)學(xué)思維最有效的方法是通過解決問題來實(shí)現(xiàn)的.

  然而,在學(xué)習(xí)數(shù)學(xué)過程中,我們經(jīng)常聽到學(xué)生反映上課聽老師講課,聽的很明白,但是到自己解題時(shí),總感到困難重重,無從入手.事實(shí)上,有不少問題的解答,學(xué)生發(fā)生困難,并不是因?yàn)檫@些問題的解答太難以致學(xué)生無法解決,而是其思維形式或結(jié)果與具體問題的解決存在差異,也就是說,這時(shí)候,學(xué)生的數(shù)學(xué)思維存在著障礙.這種思維障礙,有的是來自與我們教學(xué)中的疏漏,而更多的來自于學(xué)生自身,來自于學(xué)生中存在的非科學(xué)的知識(shí)結(jié)構(gòu)和思維模式.因此,研究中學(xué)生的數(shù)學(xué)思維障礙對(duì)于增強(qiáng)中學(xué)生數(shù)學(xué)教學(xué)思維培養(yǎng)的針對(duì)性和實(shí)效性有十分重要的意義.

  二、中學(xué)數(shù)學(xué)教學(xué)中學(xué)生思維能力的培養(yǎng)方法呈現(xiàn)

  1.運(yùn)用開放型習(xí)題培養(yǎng)學(xué)生的思維能力.

  開放型習(xí)題是相對(duì)有明確條件和明確結(jié)論的封閉式習(xí)題而言的,是指題目的條件不完備或結(jié)論不確定的習(xí)題.

  練習(xí)是數(shù)學(xué)教學(xué)重要的組成部分,恰到好處的習(xí)題,不僅能鞏固知識(shí),形成技能,而且能啟發(fā)思維,培養(yǎng)能力.在教學(xué)過程中,除注意增加變式題、綜合題外,適當(dāng)設(shè)計(jì)一些開放型習(xí)題,可以培養(yǎng)學(xué)生思維的深刻性和靈活性,克服學(xué)生思維的呆板性.

  (1)運(yùn)用不定型開放題,培養(yǎng)學(xué)生思維的深刻性.

  不定型開放題,所給條件包含著答案不唯一的因素,在解題的過程中,必須利用已有的知識(shí),結(jié)合有關(guān)條件,從不同的角度對(duì)問題作全面分析,正確判斷,得出結(jié)論,從而培養(yǎng)學(xué)生思維的深刻性.

  如:學(xué)習(xí)“真分?jǐn)?shù)和假分?jǐn)?shù)”時(shí),在學(xué)生已基本掌握了真假分?jǐn)?shù)的意義后,問學(xué)生:b/a是真分?jǐn)?shù),還是假分?jǐn)?shù)?因a、b都不是確定的數(shù),所以無法確定b/a是真分?jǐn)?shù)還是假分?jǐn)?shù).在學(xué)生經(jīng)過緊張的思考和激烈的爭(zhēng)論后得出這樣的結(jié)論:當(dāng)b<a時(shí),b/a為真分?jǐn)?shù);當(dāng)b≥a時(shí),b/a是假分?jǐn)?shù).這時(shí)教師進(jìn)一步問:a、b可以是任意數(shù)嗎?這樣不僅使學(xué)生對(duì)真假分?jǐn)?shù)的意義有了更深刻的理解,而且使學(xué)生的邏輯思維能力得到了提高.

 。2)運(yùn)用多向型開放題,培養(yǎng)學(xué)生思維的廣闊性

  多向型開放題,對(duì)同一個(gè)問題可以有多種思考方向,使學(xué)生產(chǎn)生縱橫聯(lián)想,啟發(fā)學(xué)生一題多解、一題多變、一題多思,訓(xùn)練學(xué)生的發(fā)散思維,培養(yǎng)學(xué)生思維的廣闊性和靈活性.

  (3)運(yùn)用多余型開放題,培養(yǎng)學(xué)生思維品質(zhì)的批判性

  多余型開放題,將題目中的有用條件和無用條件混在一起,產(chǎn)生干擾因素,這就需要在解題時(shí),認(rèn)真分析條件與問題的關(guān)系,充分利用有用條件,舍棄無用條件,學(xué)會(huì)排除干擾因素,提高學(xué)生的鑒別能力,從而培養(yǎng)學(xué)生思維的批判性.

  如:一根繩子長(zhǎng)25米,第一次用去8米,第二次用去12米,這根繩子比原來短了多少米?

  由于受封閉式解題習(xí)慣的影響,學(xué)生往往會(huì)產(chǎn)生一種凡是題中出現(xiàn)的條件都要用上的思維定勢(shì),不對(duì)題目進(jìn)行認(rèn)真分析,錯(cuò)誤地列式為:25-8-12或25-(8+12).

  做題時(shí)引導(dǎo)學(xué)生畫圖分析,使學(xué)生明白:要求這根繩子比原來短了多少米,實(shí)際上就是求兩次一共用去多少米,這里25米是與解決問題無關(guān)的條件,正確的列式是:8+12.

  通過引導(dǎo)分析這類題,可以防止學(xué)生濫用題中的條件,有利于培養(yǎng)學(xué)生思維的批判性,提高學(xué)生明辨是非、去偽存真的鑒別能力.

 。4)運(yùn)用隱藏型開放題,培養(yǎng)學(xué)生思維的縝密性

  隱藏型開放題,是解題所需的某些條件隱藏在題目的背后,如不注意容易遺漏.在解題時(shí)既要考慮問題及明確的條件,又要考慮與問題有關(guān)的隱藏著的條件.這樣有利于培養(yǎng)學(xué)生認(rèn)真細(xì)致的審題習(xí)慣和思維的縝密性.

  如:做一個(gè)長(zhǎng)8分米、寬5分米的面袋,至少需要白布多少平方米?

  解答此題時(shí),學(xué)生往往忽視了面袋有“兩層”這個(gè)隱藏的條件,錯(cuò)誤地列式為:8×5,正確列式應(yīng)為:8×5×2.

  解此類題時(shí)要引導(dǎo)學(xué)生認(rèn)真分析題意,找出題中的隱藏條件,使學(xué)生養(yǎng)成認(rèn)真審題的良好習(xí)慣,培養(yǎng)學(xué)生思維的縝密性.

 。5)運(yùn)用缺少型開放題,培養(yǎng)學(xué)生思維的靈活性

  缺少型開放題,按常規(guī)解法所給條件似乎不足,但如果換個(gè)角度去思考,便可得到解決.

  2.優(yōu)化課堂設(shè)計(jì),調(diào)動(dòng)學(xué)生內(nèi)在的思維能力.

  (1)培養(yǎng)興趣,讓學(xué)生迸發(fā)思維.教師是課堂教學(xué)過程的策劃人和導(dǎo)演,精心設(shè)計(jì)每節(jié)課,據(jù)教學(xué)內(nèi)容創(chuàng)造形象生動(dòng)教學(xué)情境,設(shè)置誘人懸念,激發(fā)學(xué)生思維的火花和求知的欲望.

  (2)鼓勵(lì)創(chuàng)新,讓學(xué)生樂于思維.對(duì)于較難的問題或教學(xué)內(nèi)容,教師應(yīng)根據(jù)學(xué)生的實(shí)際情況,適當(dāng)分解,減緩坡度,分散難點(diǎn),在探究新知的過程中,給學(xué)生多一些鼓勵(lì),多一份肯定,少一分懲罰、少一分指責(zé),,鼓勵(lì)學(xué)生進(jìn)行求異思維活動(dòng),引導(dǎo)學(xué)生從不同的角度去觀察問題,分析問題,養(yǎng)成良好的思維習(xí)慣和品質(zhì);使學(xué)生敢于發(fā)表不同的見解,并從中感受成功的喜悅,使學(xué)生樂于思維.促進(jìn)學(xué)生思維的廣闊性發(fā)展.

  3。重視課本知識(shí)的挖掘與思辯,保證思維發(fā)展的原動(dòng)力.

  知識(shí)和思維能力是相輔相成的,離開知識(shí),培養(yǎng)能力就成了無源之水、無本之木.基礎(chǔ)知識(shí)是解決問題強(qiáng)有力的武器,但這里所說的基礎(chǔ)知識(shí)決不是死記硬背而獲得的內(nèi)容.而是指想通悟透其實(shí)質(zhì),徹底理順其來龍去脈的邏輯關(guān)系,并且能組成有機(jī)網(wǎng)絡(luò)的概念、公式、圖案、規(guī)律等.如果沒有對(duì)數(shù)學(xué)概念、原理和方法的理解和掌握,就不可能順利地進(jìn)行分析、綜合、抽象、概括、判斷和推理等思維活動(dòng).在教學(xué)過程中,引導(dǎo)學(xué)生閱讀課本,掌握基本數(shù)學(xué)知識(shí),潛移默化培養(yǎng)和提高學(xué)生準(zhǔn)確說練的文字表達(dá)能力和學(xué)習(xí)能力,以保證思維得以正常發(fā)展.

  來源:233網(wǎng)校論文中心,作者:玉曉東


本文來自:逍遙右腦記憶 http://yy-art.cn/gaozhong/277640.html

相關(guān)閱讀:高考文科數(shù)學(xué)必背公式有哪些