平面向量應(yīng)用舉例

編輯: 逍遙路 關(guān)鍵詞: 高二 來(lái)源: 高中學(xué)習(xí)網(wǎng)
2.5平面向量應(yīng)用舉例

一、教材分析
向量概念有明確的物理背景和幾何背景,物理背景是力、速度、加速度等,幾何背景是有向線(xiàn)段,可以說(shuō)向量概念是從物理背景、幾何背景中抽象而來(lái)的,正因?yàn)槿绱耍\(yùn)用向量可以解決一些物理和幾何問(wèn)題,例如利用向量計(jì)算力沿某方向所做的功,利用向量解決平面內(nèi)兩條直線(xiàn)平行、垂直位置關(guān)系的判定等問(wèn)題。
二、目標(biāo)
1.通過(guò)應(yīng)用舉例,讓學(xué)生會(huì)用平面向量知識(shí)解決幾何問(wèn)題的兩種方法-----向量法和坐
標(biāo)法,可以用向量知識(shí)研究物理中的相關(guān)問(wèn)題的“四環(huán)節(jié)” 和生活中的實(shí)際問(wèn)題
2.通過(guò)本節(jié)的學(xué)習(xí),讓學(xué)生體驗(yàn)向量在解決幾何和物理問(wèn)題中的工具作用,增強(qiáng)學(xué)生的
積極主動(dòng)的探究意識(shí),培養(yǎng)創(chuàng)新精神。
三、重點(diǎn)難點(diǎn)
重點(diǎn):理解并能靈活運(yùn)用向量加減法與向量數(shù)量積的法則解決幾何和物理問(wèn)題.
難點(diǎn):選擇適當(dāng)?shù)姆椒,將幾何?wèn)題或者物理問(wèn)題轉(zhuǎn)化為向量問(wèn)題加以解決.
四、學(xué)情分析
在平面幾何中,平行四邊形是學(xué)生熟悉的重要的幾何圖形,而在物理中,受力分析則是其中最基本的基礎(chǔ)知識(shí),那么在本節(jié)的學(xué)習(xí)中,借助這些對(duì)于學(xué)生來(lái)說(shuō),非常熟悉的內(nèi)容來(lái)講解向量在幾何與物理問(wèn)題中的應(yīng)用。
五、教學(xué)方法
1.例題教學(xué),要讓學(xué)生體會(huì)思路的形成過(guò)程,體會(huì)數(shù)學(xué)思想方法的應(yīng)用。
2.學(xué)案導(dǎo)學(xué):見(jiàn)后面的學(xué)案
3.新授課教學(xué)基本環(huán)節(jié):預(yù)習(xí)檢查、總結(jié)疑惑→情境導(dǎo)入、展示目標(biāo)→合作探究、精講點(diǎn)撥→反思總結(jié)、當(dāng)堂檢測(cè)→發(fā)導(dǎo)學(xué)案、布置預(yù)習(xí)
六、課前準(zhǔn)備
1.學(xué)生的學(xué)習(xí)準(zhǔn)備:預(yù)習(xí)本節(jié)課本上的基本內(nèi)容,初步理解向量在平面幾何和物理中的
應(yīng)用
2.教師的教學(xué)準(zhǔn)備:課前預(yù)習(xí)學(xué)案,課內(nèi)探究學(xué)案,課后延伸拓展學(xué)案。
七、課時(shí)安排:1課時(shí)
八、教學(xué)過(guò)程
(一)預(yù)習(xí)檢查、總結(jié)疑惑
檢查落實(shí)了學(xué)生的預(yù)習(xí)情況并了解了學(xué)生的疑惑,使教學(xué)具有了針對(duì)性。
(二)情景導(dǎo)入、展示目標(biāo)
教師首先提問(wèn):(1)若O為 重心,則 + + =
(2)水渠橫斷面是四邊形 , = ,且 = ,則這個(gè)四邊形
為等腰梯形.類(lèi)比幾何元素之間的關(guān)系,你會(huì)想到向量運(yùn)算之間都有什么關(guān)系?
(3) 兩個(gè)人提一個(gè)旅行包,夾角越大越費(fèi)力.為什么?
教師:本節(jié)主要研究了用向量知識(shí)解決平面幾何和物理問(wèn)題;掌握向量法和坐標(biāo)法,以及用向量解決平面幾何和物理問(wèn)題的步驟,已經(jīng)布置學(xué)生們課前預(yù)習(xí)了這部分,檢查學(xué)生預(yù)習(xí)情況并讓學(xué)生把預(yù)習(xí)過(guò)程中的疑惑說(shuō)出來(lái)。
(設(shè)計(jì)意圖:步步導(dǎo)入,吸引學(xué)生的注意力,明確學(xué)習(xí)目標(biāo)。)
(三)合作探究、精講點(diǎn)撥。
探究一:(1)向量運(yùn)算與幾何中的結(jié)論"若 ,則 ,且 所在直線(xiàn)平行或重合"相類(lèi)比,你有什么體會(huì)?(2)由學(xué)生舉出幾個(gè)具有線(xiàn)性運(yùn)算的幾何實(shí)例.
教師:平移、全等、相似、長(zhǎng)度、夾角等幾何性質(zhì)可以由向量線(xiàn)性運(yùn)算及數(shù)量積表示出來(lái): 例如,向量數(shù)量積對(duì)應(yīng)著幾何中的長(zhǎng)度.如圖: 平行四邊行 中,設(shè) = , = ,則 (平移), , (長(zhǎng)度).向量 , 的夾角為 .因此,可用向量方法解決平面幾何中的一些問(wèn)題。通過(guò)向量運(yùn)算研究幾何運(yùn)算之間的關(guān)系,如距離、夾角等.把運(yùn)算結(jié)果"翻譯"成幾何關(guān)系.本節(jié)課,我們就通過(guò)幾個(gè)具體實(shí)例,來(lái)說(shuō)明向量方法在平面幾何中的運(yùn)用
例1.證明:平行四邊形兩條對(duì)角線(xiàn)的平方和等于四條邊的平方和.
已知:平行四邊形ABCD.
求證: .
分析:用向量方法解決涉及長(zhǎng)度、夾角的問(wèn)題時(shí),我們常常要考慮向量的數(shù)量積.注意到 , ,我們計(jì)算 和 .
證明:不妨設(shè) a, b,則
a+b, a-b, a2, b2.
得 ( a+b)?( a+b)
= a?a+ a?b+b?a+b?b= a2+2a?b+b2. ①
同理    a2-2a?b+b2. ②
①+②得 2(a2+b2)=2( ).
所以,平行四邊形兩條對(duì)角線(xiàn)的平方和等于四條邊的平方和.
師:你能用幾何方法解決這個(gè)問(wèn)題嗎?
讓學(xué)生體會(huì)幾何方法與向量方法的區(qū)別與難易情況。
師:由于向量能夠運(yùn)算,因此它在解決某些幾何問(wèn)題時(shí)具有優(yōu)越性,他把一個(gè)思辨過(guò)程變成了一個(gè)算法過(guò)程,可以按照一定的程序進(jìn)行運(yùn)算操作,從而降低了思考問(wèn)題的難度.
用向量方法解決平面幾何問(wèn)題,主要是下面三個(gè)步驟,
⑴建立平面幾何與向量的聯(lián)系,用向量表示問(wèn)題中涉及的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;
⑵通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問(wèn)題;
⑶把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系.
變式訓(xùn)練: 中,D、E、F分別是AB、BC、CA的中點(diǎn),BF與CD交于點(diǎn)O,設(shè) (1)證明A、O、E三點(diǎn)共線(xiàn);(2)用 表示向量 。
例2,如圖,平行四邊形ABCD中,點(diǎn)E、F分別是AD、DC邊的中點(diǎn),BE、BF分別與AC交于R、T兩點(diǎn),你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎?
分析:由于R、T是對(duì)角線(xiàn)AC上兩點(diǎn),所以要判斷AR、RT、TC之間的關(guān)系,只需要分別判斷AR、RT、TC與AC之間的關(guān)系即可.
解:設(shè) a, b,則 a+b.
由  與 共線(xiàn),因此。存在實(shí)數(shù)m,使得 =m(a+b).
又 由 與 共線(xiàn)
因此  存在實(shí)數(shù)n,使得 =n = n( b- a).
由 = n ,得m(a+b)= a+ n( b- a).
整理得       a+ b=0.
由于向量a、b不共線(xiàn),所以有  ,解得 .
所以            .
同理            .
于是            .
所以           AR=RT=TC.
說(shuō)明:本例通過(guò)向量之間的關(guān)系闡述了平面幾何中的方法,待定系數(shù)法使用向量方法證明平面幾何問(wèn)題的常用方法.
探究二:(1)兩個(gè)人提一個(gè)旅行包,夾角越大越費(fèi)力.
(2)在單杠上做引體向上運(yùn)動(dòng),兩臂夾角越小越省力. 這些問(wèn)題是為什么?
師:向量在物理中的應(yīng)用,實(shí)際上就是把物理問(wèn)題轉(zhuǎn)化為向量問(wèn)題,然后通過(guò)向量運(yùn)算解決向量問(wèn)題,最后再用所獲得的結(jié)果解釋物理現(xiàn)象.
例3.在日常生活中,你是否有這樣的經(jīng)驗(yàn):兩個(gè)人共提一個(gè)旅行包,夾角越大越費(fèi)力;在單杠上作引體向上運(yùn)動(dòng),兩臂的夾角越小越省力.你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?
分析:上面的問(wèn)題可以抽象為如右圖所示的數(shù)學(xué)模型.只要分析清楚F、G、 三者之間的關(guān)系(其中F為F1、F2的合力),就得到了問(wèn)題的數(shù)學(xué)解釋?zhuān)?br />解:不妨設(shè)F1=F2, 由向量加法的平行四邊形法則,理的平衡原理以及直角三角形的指示,可以得到
F1= .
通過(guò)上面的式子我們發(fā)現(xiàn),當(dāng) 由 逐漸變大時(shí), 由 逐漸變大, 的值由大逐漸變小,因此,F(xiàn)1有小逐漸變大,即F1、F2之間的夾角越大越費(fèi)力,夾角越小越省力.
師:請(qǐng)同學(xué)們結(jié)合剛才這個(gè)問(wèn)題,思考下面的問(wèn)題:
⑴ 為何值時(shí),F(xiàn)1最小,最小值是多少?
⑵F1能等于G嗎?為什么?
例4如圖,一條河的兩岸平行,河的寬度 m,一艘船從A處出發(fā)到河對(duì)岸.已知船的速度v1=10km/h,水流的速度v2=2km/h,問(wèn)行駛航程最短時(shí),所用的時(shí)間是多少(精確到0.1min)?
分析:如果水是靜止的,則船只要取垂直于對(duì)岸的方向行駛,就能使行駛航程最短,所用時(shí)間最短.考慮到水的流速,要使船的行駛航程最短,那么船的速度與水流速度的合速度v必須垂直于對(duì)岸.(用《幾何畫(huà)板》演示水流速度對(duì)船的實(shí)際航行的影響)
解: = (km/h),
所以, (min).
答:行駛航程最短時(shí),所用的時(shí)間是3.1 min.
本例關(guān)鍵在于對(duì)“行駛最短航程”的意義的解釋?zhuān)础胺治觥敝薪o出的穿必須垂直于河岸行駛,這是船的速度與水流速度的合速度應(yīng)當(dāng)垂直于河岸,分析清楚這種關(guān)系侯,本例就容易解決了。
變式訓(xùn)練:兩個(gè)粒子A、B從同一源發(fā)射出來(lái),在某一時(shí)刻,它們的位移分別為 ,(1)寫(xiě)出此時(shí)粒子B相對(duì)粒子A的位移s;(2)計(jì)算s在 方向上的投影。
九、板書(shū)設(shè)計(jì)
§2.5 平面向量應(yīng)用舉例
例⒈   用向量法解平面幾何 例2 變式訓(xùn)練
問(wèn)題的“三步曲”
例3. 例4
變式訓(xùn)練
十、教學(xué)反思
本小節(jié)主要是例題教學(xué),要讓學(xué)生體會(huì)思路的形成過(guò)程,體會(huì)數(shù)學(xué)思想方法的應(yīng)用。教學(xué)中,教師創(chuàng)設(shè)問(wèn)題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)解題方法,展示思路的形成過(guò)程,總結(jié)解題規(guī)律。指導(dǎo)學(xué)生搞好解題后的反思,從而提高學(xué)生綜合應(yīng)用知識(shí)分析和解決問(wèn)題的能力.
十一、學(xué)案設(shè)計(jì)(見(jiàn)下頁(yè))

2.5平面向量應(yīng)用舉例

課前預(yù)習(xí)學(xué)案
一、預(yù)習(xí)目標(biāo)
預(yù)習(xí)《平面向量應(yīng)用舉例》,體會(huì)向量是一種處理幾何問(wèn)題、物理問(wèn)題等的工具,建立實(shí)際問(wèn)題與向量的聯(lián)系。
二、預(yù)習(xí)內(nèi)容
閱讀課本內(nèi)容,整理例題,結(jié)合向量的運(yùn)算,解決實(shí)際的幾何問(wèn)題、物理問(wèn)題。另外,在思考一下幾個(gè)問(wèn)題:
1.例1如果不用向量的方法,還有其他證明方法嗎?
2.利用向量方法解決平面幾何問(wèn)題的“三步曲”是什么?
3. 例3中,⑴ 為何值時(shí),F(xiàn)1最小,最小值是多少?
⑵F1能等于G嗎?為什么?
三、提出疑惑
同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中
疑惑點(diǎn)疑惑內(nèi)容


課內(nèi)探究學(xué)案
一、學(xué)習(xí)內(nèi)容
1.運(yùn)用向量的有關(guān)知識(shí)(向量加減法與向量數(shù)量積的運(yùn)算法則等)解決平面幾何和解析
幾何中直線(xiàn)或線(xiàn)段的平行、垂直、相等、夾角和距離等問(wèn)題.
2.運(yùn)用向量的有關(guān)知識(shí)解決簡(jiǎn)單的物理問(wèn)題.
二、學(xué)習(xí)過(guò)程
探究一:(1)向量運(yùn)算與幾何中的結(jié)論"若 ,則 ,且 所在直線(xiàn)平行或重合"相類(lèi)比,你有什么體會(huì)?

(2)舉出幾個(gè)具有線(xiàn)性運(yùn)算的幾何實(shí)例.

例1.證明:平行四邊形兩條對(duì)角線(xiàn)的平方和等于四條邊的平方和.
已知:平行四邊形ABCD.
求證: .

試用幾何方法解決這個(gè)問(wèn)題
利用向量的方法解決平面幾何問(wèn)題的“三步曲”?
(1)建立平面幾何與向量的聯(lián)系,
(2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,
(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系。
變式訓(xùn)練: 中,D、E、F分別是AB、BC、CA的中點(diǎn),BF與CD交于點(diǎn)O,設(shè)
(1)證明A、O、E三點(diǎn)共線(xiàn);
(2)用 表示向量 。

例2,如圖,平行四邊形ABCD中,點(diǎn)E、F分別是AD、DC邊的
中點(diǎn),BE、BF分別與AC交于R、T兩點(diǎn),你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎?

探究二:兩個(gè)人提一個(gè)旅行包,夾角越大越費(fèi)力.在單杠上做引體向上運(yùn)動(dòng),兩臂夾角越小越省力. 這些力的問(wèn)題是怎么回事?

例3.在日常生活中,你是否有這樣的經(jīng)驗(yàn):兩個(gè)人共提一個(gè)旅行包,夾角越大越費(fèi)力;在單杠上作引體向上運(yùn)動(dòng),兩臂的夾角越小越省力.你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?

請(qǐng)同學(xué)們結(jié)合剛才這個(gè)問(wèn)題,思考下面的問(wèn)題:
⑴ 為何值時(shí),F(xiàn)1最小,最小值是多少?
⑵F1能等于G嗎?為什么?

例4如圖,一條河的兩岸平行,河的寬度 m,一艘船從A處出發(fā)到河對(duì)岸.已知船的速度v1=10km/h,水流的速度v2=2km/h,問(wèn)行駛航程最短時(shí),所用的時(shí)間是多少(精確到0.1min)?

變式訓(xùn)練:兩個(gè)粒子A、B從同一源發(fā)射出來(lái),在某一時(shí)刻,它們的位移分別為
,(1)寫(xiě)出此時(shí)粒子B相對(duì)粒子A的位移s; (2)計(jì)算s在 方向上的投影。

三、反思總結(jié)
結(jié)合圖形特點(diǎn),選定正交基底,用坐標(biāo)表示向量進(jìn)行運(yùn)算解決幾何問(wèn)題,體現(xiàn)幾何問(wèn)題
代數(shù)化的特點(diǎn),數(shù)形結(jié)合的數(shù)學(xué)思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運(yùn)算簡(jiǎn)練標(biāo)致,又體現(xiàn)了數(shù)學(xué)的美。有關(guān)長(zhǎng)方形、正方形、直角三角形等平行、垂直等問(wèn)題常用此法。
本節(jié)主要研究了用向量知識(shí)解決平面幾何問(wèn)題和物理問(wèn)題;掌握向量法和坐標(biāo)法,以及用向量解決實(shí)際問(wèn)題的步驟。
四、當(dāng)堂檢測(cè)
1.已知 ,求邊長(zhǎng)c。
2.在平行四邊形ABCD中,已知AD=1,AB=2,對(duì)角線(xiàn)BD=2,求對(duì)角線(xiàn)AC的長(zhǎng)。
3.在平面上的三個(gè)力 作用于一點(diǎn)且處于平衡狀態(tài), 的夾角為 ,求:(1) 的大;(2) 與 夾角的大小。

課后練習(xí)與提高
一、選擇題
1.給出下面四個(gè)結(jié)論:
①若線(xiàn)段AC=AB+BC,則向量 ;
②若向量 ,則線(xiàn)段AC=AB+BC;
③若向量 與 共線(xiàn),則線(xiàn)段AC=AB+BC;
④若向量 與 反向共線(xiàn),則 .
其中正確的結(jié)論有 ( )
A. 0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)
2.河水的流速為2 ,一艘小船想以垂直于河岸方向10 的速度駛向?qū)Π,則小
船的靜止速度大小為 ( )
A.10 B. C. D.12
3.在 中,若 =0,則 為 ( )
A.正三角形 B.直角三角形 C.等腰三角形 D.無(wú)法確定
二、填空題
4.已知 兩邊的向量 ,則BC邊上的中線(xiàn)向量 用 、 表示為
5.已知 ,則 、 、 兩兩夾角是

課后練習(xí)答案

本文來(lái)自:逍遙右腦記憶 http://yy-art.cn/gaoer/60041.html

相關(guān)閱讀:平面向量數(shù)量積的坐標(biāo)表示、模、夾角