高中數(shù)學學習方法:正弦與余弦定理和公式

編輯: 逍遙路 關鍵詞: 高中數(shù)學 來源: 高中學習網(wǎng)

編者按:小編為大家收集了“高中數(shù)學學習方法:正弦與余弦定理和公式”,供大家參考,希望對大家有所幫助!

三角函數(shù)正弦與余弦的學習,在數(shù)學中只要記住相關的公式即可。日?荚囌液陀嘞业南嚓P題目一般不會很難,是很多數(shù)學基礎不是很牢的同學拿分的好題目。但對于有些同學來說還是很難拿分,那是為什么呢?

首先,我們要了解下正弦定理的應用領域

在解三角形中,有以下的應用領域:

(1)已知三角形的兩角與一邊,解三角形

(2)已知三角形的兩邊和其中一邊所對的角,解三角形

(3)運用a:b:c=sinA:sinB:sinC解決角之間的轉換關系

直角三角形的一個銳角的對邊與斜邊的比叫做這個角的正弦

正弦定理

在△ABC中,角A、B、C所對的邊分別為a、b、c,則有a/sinA=b/sinB=c/sinC=2R(其中R為三角形外接圓的半徑)

其次,余弦的應用領域

余弦定理

余弦定理是揭示三角形邊角關系的重要定理,直接運用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個邊求角的問題,若對余弦定理加以變形并適當移于其它知識,則使用起來更為方便、靈活。

正弦定理的變形公式

(1) a=2RsinA, b=2RsinB, c=2RsinC;

(2) sinA : sinB : sinC = a : b : c;     在一個三角形中,各邊與其所對角的正弦的比相等,且該比值都等于該三角形外接圓的直徑已知三角形是確定的,利用正弦定理解三角形時,其解是唯一的;已知三角形的兩邊和其中一邊的對角,由于該三角形具有不穩(wěn)定性,所以其解不確定,可結合平面幾何作圖的方法及“大邊對大角,大角對大邊”定理和三角形內角和定理去考慮解決問題

(3)相關結論:   a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC)   c/sinC=c/sinD=BD=2R(R為外接圓半徑)

(4)設R為三角外接圓半徑,公式可擴展為:a/sinA=b/sinB=c/sinC=2R,即當一內角為90°時,所對的邊為外接圓的直徑。靈活運用正弦定理,還需要知道它的幾個變形   sinA=a/2R,sinB=b/2R,sinC=c/2R   asinB=bsinA,bsinC=csinB,asinC=csinA

(5)a=bsinA/sinB sinB=bsinA/a

正弦、余弦典型例題

1.在△ABC中,∠C=90°,a=1,c=4,則sinA 的值為

2.已知α為銳角,且,則 α 的度數(shù)是( ) A.30° B.45° C.60° D.90°

3.在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是(  ) A.75° B.90° C.105° D.120°

4.若∠A為銳角,且,則A=(  ) A.15° B.30° C.45° D.60°

5.在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD= ,E是AC中點, EF⊥BC,垂足為F,求sin∠EBF的值。

正弦、余弦解題訣竅

1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理

2、已知三邊,或兩邊及其夾角用余弦定理

3、余弦定理對于確定三角形形狀非常有用,只需要知道最大角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。

以上就是為大家提供的“高中數(shù)學學習方法:正弦與余弦定理和公式”希望能對考生產生幫助,更多資料請咨詢中考頻道。


本文來自:逍遙右腦記憶 http://yy-art.cn/gaozhong/144978.html

相關閱讀:高二數(shù)學必修一知識點:不等式的解法