高中數(shù)學(xué)數(shù)列公式及結(jié)論_高中數(shù)學(xué)公式

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)

高中數(shù)列基本公式:

1、一般數(shù)列的通項an與前n項和Sn的關(guān)系:an=

2、等差數(shù)列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當(dāng)d≠0時,an是關(guān)于n的一次式;當(dāng)d=0時,an是一個常數(shù)。

3、等差數(shù)列的前n項和公式:Sn=

Sn=

Sn=

當(dāng)d≠0時,Sn是關(guān)于n的二次式且常數(shù)項為0;當(dāng)d=0時(a1≠0),Sn=na1是關(guān)于n的正比例式。

4、等比數(shù)列的通項公式: an= a1qn-1an= akqn-k

(其中a1為首項、ak為已知的第k項,an≠0)

5、等比數(shù)列的前n項和公式:當(dāng)q=1時,Sn=n a1 (是關(guān)于n的正比例式);

當(dāng)q≠1時,Sn=

Sn=

三、高中數(shù)學(xué)中有關(guān)等差、等比數(shù)列的結(jié)論

1、等差數(shù)列{an}的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數(shù)列。

2、等差數(shù)列{an}中,若m+n=p+q,則

3、等比數(shù)列{an}中,若m+n=p+q,則

4、等比數(shù)列{an}的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數(shù)列。

5、兩個等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。

6、兩個等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列

{an

bn}、

、

仍為等比數(shù)列。

7、等差數(shù)列{an}的任意等距離的項構(gòu)成的數(shù)列仍為等差數(shù)列。


本文來自:逍遙右腦記憶 http://yy-art.cn/gaozhong/209463.html

相關(guān)閱讀:高中數(shù)學(xué)教學(xué)中學(xué)生思維能力的培養(yǎng)