數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的創(chuàng)新思維

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學(xué) 來(lái)源: 高中學(xué)習(xí)網(wǎng)

  [摘要]創(chuàng)新能力,是指人在順利完成以原有知識(shí)、經(jīng)驗(yàn)為基礎(chǔ)的創(chuàng)建新事物的活動(dòng)過(guò)程中表現(xiàn)出來(lái)的潛在的心理品質(zhì)。而創(chuàng)新能力的作用就是教人如何進(jìn)行創(chuàng)新實(shí)踐,如何解決遇到的各種現(xiàn)實(shí)問(wèn)題。

  [關(guān)鍵詞]創(chuàng)新思維,創(chuàng)新意識(shí),個(gè)性品質(zhì),數(shù)學(xué)思維能力,創(chuàng)新人才

  創(chuàng)新思維的培養(yǎng)不僅是學(xué)數(shù)學(xué)的需要,更是時(shí)代的要求。作者根據(jù)自己多年的教學(xué)實(shí)踐,就在教學(xué)中如何培養(yǎng)學(xué)生的創(chuàng)新思維作出了闡釋。

  一、深化理性思維,改善思維品質(zhì),培養(yǎng)創(chuàng)新意識(shí)

  興趣是培養(yǎng)學(xué)生創(chuàng)新意識(shí)的前提,是構(gòu)成創(chuàng)新動(dòng)機(jī)最現(xiàn)實(shí)、最活潑的心理成份,是創(chuàng)新的動(dòng)力源泉。教學(xué)中應(yīng)充分利用教材,恰當(dāng)?shù)囊龑?dǎo),適時(shí)的啟發(fā),激發(fā)不同層次學(xué)生的學(xué)習(xí)動(dòng)力、興趣,調(diào)整學(xué)生學(xué)習(xí)心理的轉(zhuǎn)變,有意識(shí)的培養(yǎng)學(xué)生有效的思維意識(shí)和思維習(xí)慣。

  1.培養(yǎng)學(xué)生觀察問(wèn)題,發(fā)現(xiàn)問(wèn)題,解決問(wèn)題的思維習(xí)慣,激發(fā)創(chuàng)新意識(shí)

  人們發(fā)現(xiàn)新問(wèn)題的能力是與大腦的積極思維分不開(kāi)的,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題的能力是培養(yǎng)創(chuàng)新意識(shí)的前提。數(shù)學(xué)知識(shí)的獲得,主要是通過(guò)對(duì)實(shí)物和模型的觀察和思考,抽象概括出它們的本質(zhì)屬性,并用自己的語(yǔ)言給出定義或命題;讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)問(wèn)題的解決過(guò)程,體驗(yàn)思維的形成過(guò)程。

  例如,將邊長(zhǎng)為3的正方體的六個(gè)面涂上顏色,而后分割成大小均勻的邊長(zhǎng)為1的正方體,則所得小正方體中只有一個(gè)面有顏色的概率是(B)。

  A.827B.29C.127D.49

  分析:“將邊長(zhǎng)為3的正方體的六個(gè)面涂上顏色,而后分割成大小均勻的邊長(zhǎng)為1的正方體”在生活中的實(shí)物模型?魔方:

  所得小正方體中,①三個(gè)面有顏色的是位于原正方體八個(gè)頂點(diǎn)的八個(gè)小正方體;

 、诙䝼(gè)面有顏色的是位于原正方體十二條棱中間的十二個(gè)小正方體;

 、垡粋(gè)面有顏色的是位于原正方體六個(gè)面正中間的六個(gè)小正方體;

 、軟](méi)有面有顏色的是位于原正方體正中心的一個(gè)小正方體。

  【評(píng)述】培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題的能力,著重是培養(yǎng)學(xué)生數(shù)學(xué)地提出問(wèn)題的能力,以及分析問(wèn)題,解決問(wèn)題的能力及過(guò)程。上述解決問(wèn)題的過(guò)程是:數(shù)學(xué)問(wèn)題情景?實(shí)物(或模型)?特征分析?歸類(lèi)整理?數(shù)學(xué)計(jì)算?結(jié)論。不但起到了鞏固固有的思維結(jié)構(gòu)與形式,而且收到了發(fā)散結(jié)論的思維效果。

  2.培養(yǎng)學(xué)生的質(zhì)疑能力,促進(jìn)創(chuàng)新意識(shí)的萌動(dòng)

  創(chuàng)新思維是從發(fā)現(xiàn)問(wèn)題開(kāi)始的,“學(xué)起于思,思源于疑”。疑,是點(diǎn)燃學(xué)生思維的火種,有疑問(wèn)才會(huì)去探索。如果對(duì)某些地方大膽質(zhì)疑,便可促其深思,以求悟解。在數(shù)學(xué)教學(xué)中,要鼓勵(lì)學(xué)生質(zhì)疑,問(wèn)難,敢于思考、猜測(cè),敢于超越常規(guī);鼓勵(lì)學(xué)生善于生疑,反思。學(xué)生質(zhì)疑越多,求知欲越旺,興趣會(huì)越濃,這樣學(xué)生的創(chuàng)新意識(shí)、創(chuàng)新思維、創(chuàng)新精神就會(huì)在質(zhì)疑、解疑中得到培養(yǎng)和提高。

  例如,異面直線間的距離的求法?線面間的距離,這一轉(zhuǎn)化一旦直接提出學(xué)生是很難接受的,在其思維活動(dòng)中必然產(chǎn)生疑慮,促使其利用現(xiàn)有知識(shí)去佐證:異面直線的公垂線的找法,從而整理如下材料。

  ①a,b為異面直線,過(guò)直線b上一點(diǎn)B有且只有一條直線c與a平行;-a∥c;

 、谶^(guò)兩條相交直線b,c有且只有一個(gè)平面α-a∥α;

 、圻^(guò)直線a上一點(diǎn)A有且只有一條直線d與平面α垂直于C;-d⊥α即-AC⊥α;

 、苤本a∩直線d=A,過(guò)b,c有且只有一個(gè)平面β,使得β⊥α于直線e;-β⊥α;

 、輆∥α,a∩β,α∩β=e,則a∥e,又由a∥c知e∥c;

  ⑥在平面α中,e∥c,b∩c=B則b∩e=D;

  ⑦在平面β中,a∥e,過(guò)D有且只有一條直線f與d平行且f⊥a于E即DE∥AC且DE=AC;

  ⑧DE⊥a與E,DE⊥b與D則DE即為直線a,b的公垂線段亦即異面直線a,b間的距離。

  結(jié)論:異面直線a,b間的距離即為直線a到平面α的距離AC。

  【評(píng)述】在疑問(wèn)中探索,不僅能加強(qiáng)思維的形成過(guò)程,而且能拓展思維的廣度,深度,促進(jìn)創(chuàng)新意識(shí)的原始萌動(dòng)。

  3.加強(qiáng)學(xué)生個(gè)性品質(zhì)的養(yǎng)成,增強(qiáng)創(chuàng)新意識(shí)

  個(gè)性品質(zhì)是指學(xué)生具有一定的數(shù)學(xué)視野及數(shù)學(xué)意識(shí),認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值,崇尚數(shù)學(xué)的理性精神,形成審慎思維的習(xí)慣,體會(huì)數(shù)學(xué)的美學(xué)意義。在課堂上要培養(yǎng)學(xué)生創(chuàng)造性的心理素質(zhì),就必須尊重學(xué)生個(gè)性,努力創(chuàng)造一個(gè)讓學(xué)生積極主動(dòng)參與的教學(xué)活動(dòng),并敢于發(fā)表自己見(jiàn)解的民主氛圍,讓不同層次的學(xué)生獲得不同程度的成功。在教學(xué)中要充分發(fā)揮學(xué)生的自主性和創(chuàng)造性,善于適時(shí)利用課堂中的每次“意外”,引導(dǎo)學(xué)生,鼓勵(lì)學(xué)生即興創(chuàng)造,超越預(yù)設(shè)的教學(xué)目標(biāo)。

  二、培養(yǎng)學(xué)生的數(shù)學(xué)思維能力,提高探究能力,發(fā)展學(xué)生的創(chuàng)新意識(shí)和實(shí)踐能力

  數(shù)學(xué)教學(xué)中注重培養(yǎng)學(xué)生數(shù)學(xué)地提出問(wèn)題,分析問(wèn)題和解決問(wèn)題的能力,發(fā)展學(xué)生的創(chuàng)新意識(shí)和實(shí)踐能力,提高學(xué)生數(shù)學(xué)探究能力,數(shù)學(xué)建模能力和數(shù)學(xué)交流能力。努力培養(yǎng)學(xué)生的數(shù)學(xué)思維能力。

  1.“縱橫聯(lián)系”形成類(lèi)比,培養(yǎng)學(xué)生思維的連續(xù)性,拓展性,發(fā)展學(xué)生的創(chuàng)新意識(shí)

  類(lèi)比,是一種思維跳躍,借助于類(lèi)比,可以發(fā)現(xiàn)新領(lǐng)域里的新結(jié)論。教學(xué)中有意識(shí)地對(duì)相關(guān)知識(shí)模塊進(jìn)行比較,找出其異同點(diǎn),以此獲得更新,更高的理解,所以說(shuō)類(lèi)比是培養(yǎng)學(xué)生創(chuàng)新思維的一種重要方法。

  例如,同一平面中線線位置關(guān)系→空間平面與平面;平面向量→空間向量。

  2.“往前多走一步”,通過(guò)歸納,培養(yǎng)學(xué)生思維的全面性,深刻性,培養(yǎng)學(xué)生創(chuàng)新思維

  歸納是由特殊到一般的認(rèn)知過(guò)程;是通過(guò)對(duì)特例或事物的一部分進(jìn)行觀察與綜合,進(jìn)而發(fā)現(xiàn)和提出一般性結(jié)論或規(guī)律的過(guò)程;歸納能使我們迅速地發(fā)現(xiàn)事物的特征、屬性和規(guī)律,是我們作出科學(xué)猜想的基礎(chǔ)和依據(jù),是發(fā)現(xiàn)數(shù)學(xué)問(wèn)題的重要手段之一。因此,借助歸納是培養(yǎng)學(xué)生發(fā)現(xiàn)能力和創(chuàng)新思維的一條基本途徑。

  例如,求數(shù)列的通項(xiàng)的8種模式。

  3.“多反思”,通過(guò)變式培養(yǎng)學(xué)生的發(fā)散思維,形成探索意識(shí)

  教學(xué)中要求學(xué)生思考問(wèn)題時(shí)要注重多思路,多方法,換角度;解決問(wèn)題時(shí)要注重多路徑,多方式。對(duì)同一個(gè)問(wèn)題,從不同的方向、不同的角度、不同的層次橫向拓展,縱向深入,去探索、轉(zhuǎn)化、變換、遷移、分析,激發(fā)學(xué)生潛能,提高學(xué)生素質(zhì)。

  例如,全集I={1,2,3,4,5},{1,3}?A?I,則符合條件的集合A有()個(gè)。

  變式1{1,3}?A?I,則符合條件的集合A有()個(gè)。

  變式2{1,3}?A?I,則符合條件的集合A有()個(gè)。

  變式3{1,3}?A?I,則符合條件的集合A有()個(gè)。

  【評(píng)述】變式訓(xùn)練不僅能增強(qiáng)例題的使用價(jià)值,強(qiáng)化了固有思維模式極其形成過(guò)程,而且培養(yǎng)了學(xué)生的發(fā)散思維,挖掘了學(xué)生的創(chuàng)新潛力,形成探究意識(shí)。

  綜上所述,我們應(yīng)以培養(yǎng)學(xué)生創(chuàng)新思維為核心目標(biāo),充分給予學(xué)生自主學(xué)習(xí)的機(jī)會(huì),鼓勵(lì)學(xué)生敢于探索,勇于創(chuàng)新,科學(xué)運(yùn)用數(shù)學(xué)思想、觀點(diǎn)和方法解決問(wèn)題,為一代創(chuàng)新人才的培養(yǎng)打下堅(jiān)實(shí)的基礎(chǔ)。

  來(lái)源:233網(wǎng)校論文中心


本文來(lái)自:逍遙右腦記憶 http://yy-art.cn/gaozhong/652492.html

相關(guān)閱讀:高中數(shù)學(xué)教學(xué)中學(xué)生思維能力的培養(yǎng)