2016中考數(shù)學(xué)公式總結(jié)

編輯: 逍遙路 關(guān)鍵詞: 初中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)

2016中考數(shù)學(xué)公式總結(jié)

圓與弧的公式:

正n邊形的每個內(nèi)角都等于(n-2)180/n

弧長計算公式:L=n兀R/180

扇形面積公式:S扇形=n兀R^2/360=LR/2

內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R-rr)④兩圓內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dr)

定理相交兩圓的連心線垂直平分兩圓的公共弦

定理把圓分成n(n3):⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360,因此k(n-2)180/n=360化為(n-2)(k-2)=4

弧長計算公式:L=n兀R/180

因式分解公式:

公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

平方差公式:a平方-b平方=(a+b)(a-b)

完全平方和公式:(a+b)平方=a平方+2ab+b平方

完全平方差公式:(a-b)平方=a平方-2ab+b平方

兩根式:ax^2+bx+c=a[x-(-b+(b^2-4ac))/2a][x-(-b-(b^2-4ac))/2a]兩根式

立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)

立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)

完全立方公式:a^33a^2b+3ab^2b^3=(ab)^3.

扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

一元二次方程公式與判別式:

一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a

根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達定理

判別式

b2-4ac=0 注:方程有兩個相等的實根

b2-4ac0 注:方程有兩個不等的實根

b2-4ac0 注:方程沒有實根,有共軛復(fù)數(shù)根

三角不等式:

|a+b||a|+|b|

|a-b||a|+|b|

|a|=ab

|a-b||a|-|b|-|a||a|

等差數(shù)列公式:

某些數(shù)列前n項和

1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n2

2+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/32016中考數(shù)學(xué)公式總結(jié)

兩角和公式:

兩角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=((1-cosA)/2)sin(A/2)=-((1-cosA)/2)

cos(A/2)=((1+cosA)/2)cos(A/2)=-((1+cosA)/2)

tan(A/2)=((1-cosA)/((1+cosA))tan(A/2)=-((1-cosA)/((1+cosA))

ctg(A/2)=((1+cosA)/((1-cosA))ctg(A/2)=-((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB



本文來自:逍遙右腦記憶 http://yy-art.cn/chuzhong/459848.html

相關(guān)閱讀:淺談“高效課堂”