高中各科目的學(xué)習(xí)對(duì)同學(xué)們提高綜合成績(jī)非常重要,大家一定要認(rèn)真掌握,小編為大家整理了高中數(shù)學(xué)公式(等比數(shù)列公式),希望同學(xué)們學(xué)業(yè)有成!
(1)等比數(shù)列的通項(xiàng)公式是:An=A1×q^(n-1)
若通項(xiàng)公式變形為an=a1/q*q^n(n∈N*),當(dāng)q>0時(shí),則可把a(bǔ)n看作自變量n的函數(shù),點(diǎn)(n,an)是曲線y=a1/q*q^x上的一群孤立的點(diǎn)。
(2) 任意兩項(xiàng)am,an的關(guān)系為an=am·q^(n-m)
(3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項(xiàng):aq·ap=ar^2,ar則為ap,aq等比中項(xiàng)。
(5) 等比求和:Sn=a1+a2+a3+.......+an
①當(dāng)q≠1時(shí),Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)
②當(dāng)q=1時(shí), Sn=n×a1(q=1)
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底數(shù)數(shù)后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說(shuō):一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。
為大家整理的高中數(shù)學(xué)公式(等比數(shù)列公式)就到這里,同學(xué)們一定要認(rèn)真閱讀,希望對(duì)大家的學(xué)習(xí)和生活有所幫助。
本文來(lái)自:逍遙右腦記憶 http://yy-art.cn/gaozhong/183318.html
相關(guān)閱讀:高中數(shù)學(xué)平面解析幾何怎樣學(xué)習(xí)才有效呢