參考答案一、選擇題:1 命題意圖和考查點(diǎn):本題主要考查程序框圖有關(guān)基礎(chǔ)知識(shí)答案:B2.命題意圖和考查點(diǎn):本題主要考查統(tǒng)計(jì)中隨機(jī)抽樣等有關(guān)知識(shí)答案:C3. 命題意圖和考查點(diǎn):本題主要考查概率中隨機(jī)事件等基礎(chǔ)知識(shí)答案:D4. 命題意圖和考查點(diǎn):本題主要考查進(jìn)制等基礎(chǔ)知識(shí)答案:D5.命題意圖和考查點(diǎn):本題主要考查程序框圖各結(jié)構(gòu)等基礎(chǔ)知識(shí)答案:B6. 命題意圖和考查點(diǎn):本題主要考查利用程序框圖計(jì)算識(shí)別答案:B第一次;第二次;第三次;第四次;第五次此時(shí)滿足條件輸出,選B.7. 命題意圖和考查點(diǎn):本題主要考查基本幾何概型識(shí)別和精確計(jì)算答案:C 8. 命題意圖和考查點(diǎn):本題主要考查程序框圖及分段函數(shù)等有關(guān)知識(shí)答案:C,如圖1或,所以或9.“命題意圖和考查點(diǎn):本題主要考查統(tǒng)計(jì)中變量間的相關(guān)關(guān)系等答案:C依上面的解釋,可設(shè)當(dāng)時(shí),,當(dāng)時(shí),,于是估計(jì),存在 使得當(dāng)時(shí),,當(dāng)時(shí),.由是的一次函數(shù),且在區(qū)間時(shí),在時(shí),,于是遞減,,.若,則與題意不符;若,則是減函數(shù),與父母高者子女相矛盾,舍去,于是.10. 命題意圖和考查點(diǎn):本題主要考查程序框圖、二分法、函數(shù)與方程等知識(shí)答案:B二、填空題:11.命題意圖和考查點(diǎn):本題主要考查算法初步中算法語句等基礎(chǔ)知識(shí)答案: 12. 命題意圖和考查點(diǎn):本題主要考查概率問題本質(zhì)的理解答案: 13. 命題意圖和考查點(diǎn):圓的基本性質(zhì)及參數(shù)式的理解運(yùn)用答案: -1 設(shè),則直接計(jì)算即可14.命題意圖和考查點(diǎn):本題主要考查統(tǒng)計(jì)中的莖葉圖、標(biāo)準(zhǔn)差等基本知識(shí)答案: 15.命題意圖和考查點(diǎn):本題主要考查統(tǒng)計(jì)、程序框圖邏輯思維答案: 600016.命題意圖和考查點(diǎn):本題主要考查幾何概型基本知識(shí)及運(yùn)用等答案: 17.命題意圖和考查點(diǎn):本題綜合考查直線、圓,數(shù)形結(jié)合思想答案: 由題可知?jiǎng)又本過定點(diǎn).設(shè)點(diǎn),由可求得點(diǎn)的軌跡方程為圓,故線段長度的最大值為三、解答題:18.命題意圖和考查點(diǎn):本題考查隨機(jī)抽樣、眾數(shù)和中位數(shù)2分()眾數(shù)的估計(jì)值為最高的矩形的中點(diǎn),即眾數(shù)的估計(jì)值等于 設(shè)圖中虛線所對(duì)應(yīng)的車速為,則中位數(shù)的估計(jì)值,解得中位數(shù)的估計(jì)值 ------------- 6分(3)車速的車輛(輛車速的車輛(輛 設(shè)車速的車輛,車速的車輛,則所有基本事件有:共15種 其中車速的車輛輛共14種 所以,車速的車輛輛. -------------12分,其中為數(shù)據(jù)的平均數(shù))命題意圖和考查點(diǎn):本題考查隨機(jī)抽樣、方差等統(tǒng)計(jì)學(xué)知識(shí)和簡單的概率計(jì)算,考查用樣本估計(jì)總體的思想性及化簡計(jì)算觀察.解:(?)由題意可知:。(?)由題意可知:。(?)由題意可知:,因此有當(dāng),,時(shí),有.∴=15(人). --------4分(人).設(shè)應(yīng)在優(yōu)秀中抽取人,則 ,∴(人)所以應(yīng)在優(yōu)秀中抽8名 --------8分 (3)由題意可知, ,且,滿足條件的有(17,23),(18,22),(19,21),(20,20),(21,19),(22,18),共有6組. 設(shè)事件為“優(yōu)秀學(xué)生中男生不少于女生”,即,滿足條件的有(20,20),(21,19),(22,18)共有3組,所以.即優(yōu)秀學(xué)生中女生少于男生的概率為. 21 命題意圖和考查點(diǎn):考查圓與直線的位置關(guān)系,、圓的幾何性質(zhì),并考查邏輯推理和計(jì)算能力解:(1)由直線的方程為. 令,得.由直線的方程為,且在圓上(2)證明:設(shè),則直線的方程為 在此方程中令得直線的斜率令,得. 為線段的中點(diǎn),以為直徑的圓恰以為圓心,半徑等于. 若,則此時(shí)與軸垂直,即; 若,則此時(shí)直線的斜率為, 直線與圓相切.的方程為,即.因?yàn)橹本被圓截得的弦長為,而圓的半徑為1,所以圓心到:的距離為.化簡,得,解得或.所以直線的方程為或.,由題意,得,即.化簡得,即動(dòng)圓圓心C在定直線上運(yùn)動(dòng).過定點(diǎn),設(shè),則動(dòng)圓C的半徑為.于是動(dòng)圓C的方程為.整理,得.得或所以定點(diǎn)的坐標(biāo)為,. 每天發(fā)布最有價(jià)值的高考資源 每天發(fā)布最有價(jià)值的高考資源 1 0 每天發(fā)布最有價(jià)值的湖北省穩(wěn)派教育2015-2016學(xué)年高二上學(xué)期期中考試數(shù)學(xué)文試題(掃描版)
本文來自:逍遙右腦記憶 http://yy-art.cn/gaoer/613745.html
相關(guān)閱讀:高二數(shù)學(xué)必修三章單元測(cè)試題