云南省玉溪一中屆高三上學(xué)期期中考試 數(shù)學(xué)文

編輯: 逍遙路 關(guān)鍵詞: 高三 來源: 高中學(xué)習(xí)網(wǎng)
試卷說明:

玉溪一中201屆試題班級(jí) 第卷(選擇題,共分)一、選擇題本大題共個(gè)小題,每小題分,共分在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)符合題目要求.1.設(shè)集合{1,2},則滿足A∪B={1,2,3}的集合B的個(gè)數(shù)是A. 1 B. 3 C. 4 D. 82.若復(fù)數(shù)(a∈R,i為虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)a的值為A. -2 B. 6 C. 4 D. -63.下列命題中是假命題的是A.x∈(0,),x>sinx B. x0∈R,sinx0+cosx0=2C.x∈R,3x>0 D. x0∈R,lgx0=04.函數(shù)f(x)=-cosx在[0,+∞)內(nèi)A.沒有零點(diǎn) B.有且僅有一個(gè)零點(diǎn) C.有且僅有兩個(gè)零點(diǎn) D.有無窮多個(gè)零點(diǎn)5.已知數(shù)列{an}為等比數(shù)列,Sn是它的前n項(xiàng)和.若a2?a3=2a1,且a4與2a7的等差中項(xiàng)為,則S5=A. 35 B. 33 C. 31 D. 296.已知,,若向區(qū)域上隨機(jī)投一點(diǎn)P,則點(diǎn)P落入?yún)^(qū)域的概率為A. B. C. D. 7.函數(shù)y=sin(ωx+φ)(ω>0且φ<)在區(qū)間[,]上單調(diào)遞減,且函數(shù)值從1減小到-1,那么此函數(shù)圖象與y軸交點(diǎn)的縱坐標(biāo)為A. B. C. D. 8.設(shè)直線x=t與函數(shù)f(x)=x2,g(x)=lnx的圖象分別交于點(diǎn)M,N,則當(dāng)MN達(dá)到最小時(shí)t的值為A. 1 B. C. D. 9.如圖是一個(gè)空間幾何體的三視圖,則該幾何體的外接球的表面積為A. 8π B. 6π C. 4π D. 2π10.已知橢圓C1:+=1(a>b>0)與雙曲線C2:x2-=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長(zhǎng)軸為直徑的圓相交于A,B兩點(diǎn).若C1恰好將線段AB三等分,則A. a2= B. a2=13 C. b2= D. b2=211.已知函數(shù)f(x)=ex+x.對(duì)于曲線y=f(x)上橫坐標(biāo)成等差數(shù)列的三個(gè)點(diǎn)A,B,C,給出以下判斷:①△ABC一定是鈍角三角形;②△ABC可能是直角三角形;③△ABC可能是等腰三角形;④△ABC不可能是等腰三角形.其中,正確的判斷是A. ①③ B. ①④ C. ②③ D. ②④12.函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;②f()=f(x);③f(1-x)=1-f(x).則f()+f()=A. B. C. 1 D. 第卷(非選擇題,共分)二、填空題本大題小題,每題分,共分 13. 若函數(shù)為偶函數(shù),則的最小正值是 ..若以雙曲線-y2=1的右頂點(diǎn)為圓心的圓恰與雙曲線的漸近線相切,則圓的標(biāo)準(zhǔn)方程是 .15.△的內(nèi)角、、的對(duì)邊分別為、、,三邊長(zhǎng)、、成等比數(shù)列,且,則的值為_________.16.已知直線與曲線交于A、B兩點(diǎn),當(dāng)時(shí),點(diǎn)到直線距離的最小值等于 .三、解答題本大題共小題,共分17.(本小題滿分12分)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知= .(Ⅰ)求的值;(Ⅱ)若cosB=,b=2,求△ABC的面積S.18.(本小題滿分12分)為了對(duì)廉租房的實(shí)施辦法進(jìn)行研究,用分層抽樣的方法從A,B,C三個(gè)片區(qū)的相關(guān)家庭中,抽取若干戶家庭進(jìn)行調(diào)研,有關(guān)數(shù)據(jù)見下表(單位:戶) 片區(qū)相關(guān)家庭戶數(shù)抽取家庭戶數(shù)A342B17C68(Ⅰ)求,;(Ⅱ)若從B、C兩個(gè)片區(qū)抽取的家庭中隨機(jī)選2戶家庭參加實(shí)施辦法的聽證會(huì),求這2戶家庭都來自C片區(qū)的概率.19.(本小題滿分12分)如圖,直二面角D—AB—E中,四邊形ABCD是邊長(zhǎng)為2的正方形,AE=EB,點(diǎn)F在CE上,且BF⊥平面ACE.(Ⅰ)求證:AE⊥平面BCE;(Ⅱ)求二面角B—AC—E的正弦值;(Ⅲ)求點(diǎn)D到平面ACE的距離.20.(本小題滿分12分)已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-2.(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;(Ⅱ)若函數(shù)y=f(x)與y=g(x)的圖象恰有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.21.(本小題滿分12分)已知函數(shù).(Ⅰ)若,求的單調(diào)區(qū)間;(Ⅱ)是否存在實(shí)數(shù),使對(duì)恒成立?若存在,求出的值若不存在,請(qǐng)說出理由.請(qǐng)考生在第22、23題中任選一題做答,如果多做,則按所做的第一題記分..(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C的方程是p=4,直線l的方程是psin(θ+)=3,求圓C上的點(diǎn)到直線l的距離的最大值.23.(本小題滿分10分)選修4-5:不等式選講設(shè)函數(shù)f(x)=x-2a,a∈R.(Ⅰ)若不等式f(x)<1的解集為{x1<x<3},求a的值;(Ⅱ)若存在x0∈R,使f(x0)+x0<3,求a的取值范圍.玉溪一中201屆試題一、選擇題本大題共1個(gè)小題,每小題分,共分.二、填空題本大題個(gè)小題,每題分,共分.; 14. (x-2)2+y2=; 15. ; 16. 三、解答題本大題共個(gè)小題,共分.(本小題滿分12分)解:(Ⅰ)由正弦定理,設(shè)===k,則==,所以=,即(cosA-2cosC)sinB=(2sinC-sinA)cosB,化簡(jiǎn)可得sin(A+B)=2sin(B+C).又A+B+C=π,所以sinC=2sinA.因此=2.(Ⅱ)由=2得c=2a.由余弦定理b2=a2+c2-2accosB及cosB=,b=2,得4=a2+4a2-4a2×.解得a=1,從而c=2.又因?yàn)閏osB=,且0<B<π,所以sinB=,因此S=acsinB=×1×2×= .18.(本小題滿分12分)解: (Ⅰ)由題意可得:,所以,;………………4分(Ⅱ)記從B片區(qū)抽取的一戶家庭為b, 從C片區(qū)抽取的4戶家庭為c1,c2,c3,c4,則從B、C兩個(gè)片區(qū)抽取的5戶家庭中隨機(jī)選2戶家庭參加聽證會(huì)的基本事件有(b, c1),(b, c2),(b, c3),(b, c4),(c1, c2),(c1, c3),(c1, c4),(c2, c3),(c2, c4),(c3, c4)共10種.選中的2戶家庭都來自C片區(qū)的基本事件有(c1, c2),(c1, c3),(c1, c4),(c2, c3),(c2, c4),(c3, c4)共6種.所以,選中的2戶家庭都來自C片區(qū)的概率為:.……………12分19.(本小題滿分12分)解:(Ⅰ)∵ BF⊥平面AEC,∴ BF⊥AE,∵ 二面角D—AB—E為直二面角, ∴ 平面ABCD⊥平面ABE,又BC⊥AB,∴ BC⊥平面ABE,∴ BC⊥AE,又BF∩BC=B,∴ AE⊥平面BCE.(Ⅱ)連接BD交AC于點(diǎn)G,連接FG,∵ 四邊形ABCD為正方形,∴ BD⊥AC,∵ BF⊥平面ACE,∴ BF⊥AC,又BD∩BF=B,∴ AC⊥平面BFG.∴ FG⊥AC,∠FGB為二面角B—AC—E的平面角,由(Ⅰ)可知,AE⊥平面BCE,∴ AE⊥EB,又AE=EB,AB=2,∴ AE=BE=,在直角三角形BCE中,CE==,BF===,在正方形ABCD中,BG=,在直角三角形BFG中,sin∠FGB=== .即二面角B—AC—E的正弦值為 .(Ⅲ)由(Ⅱ)可知,在正方形ABCD中,BG=DG,點(diǎn)D到平面ACE的距離等于點(diǎn)B到平面ACE的距離,而BF⊥平面ACE,則線段BF的長(zhǎng)度就是點(diǎn)B到平面ACE的距離,即為點(diǎn)D到平面ACE的距離.故點(diǎn)D到平面ACE的距離為= .20.(本小題滿分12分)解:(Ⅰ)令f′(x)=lnx+1=0得x=,① 當(dāng)0<t<時(shí),函數(shù)f(x)在(t,)上單調(diào)遞減,在(,t+2)上單調(diào)遞增,此時(shí)函數(shù)f(x)在區(qū)間[t,t+2]上的最小值為f()=-;② 當(dāng)t≥時(shí),函數(shù)f(x)在[t,t+2]上單調(diào)遞增,此時(shí)函數(shù)f(x)在區(qū)間[t,t+2]上的最小值為f(t)=tlnt.(Ⅱ)由題意得,f(x)-g(x)=xlnx+x2-ax+2=0在(0,+∞)上有且僅有一個(gè)根,即a=lnx+x+在(0,+∞)上有且僅有一個(gè)根,令h(x)=lnx+x+,則h′(x)=+1-==(x+2)(x-1),易知h(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,所以a=h(x)min=h(1)=3.21.(本小題滿分12分)解:(Ⅰ),由得,0↓極大↑在單調(diào)減,在單調(diào)增,……………………………4分(Ⅱ)對(duì)恒成立等價(jià)于對(duì)恒成立, 令,顯然有,,……………………………………………………………6分 當(dāng)時(shí),,時(shí),單調(diào)減,時(shí),單調(diào)增 在取得最小值,,恒成立 當(dāng)時(shí),在單調(diào)減,當(dāng)時(shí), 當(dāng)時(shí),在單調(diào)增,當(dāng)時(shí), 當(dāng)時(shí),,在上單調(diào)增,當(dāng)時(shí),所以,存在使對(duì)恒成立…………………………………12分22.(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程解:以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸,建立平面直角坐標(biāo)系,易得圓C的直角坐標(biāo)方程是x2+y2=16,直線l的直角坐標(biāo)方程是y+x-6=0,圓心C(0,0)到直線l的距離d==3,∴ 圓C上的點(diǎn)到直線l的距離的最大值為3+4=7.23.(本小題滿分10分)選修4-5:不等式選講解:(Ⅰ)由題意可得x-2a<1可化為2a-1<x<2a+1,即,解得a=1.(Ⅱ)令g(x)=f(x)+x=x-2a+x=,所以函數(shù)g(x)=f(x)+x的最小值為2a,根據(jù)題意可得2a<3,即a<,所以a的取值范圍為(-∞,).云南省玉溪一中屆高三上學(xué)期期中考試 數(shù)學(xué)文
本文來自:逍遙右腦記憶 http://yy-art.cn/gaosan/988739.html

相關(guān)閱讀:2018高三數(shù)學(xué)寒假作業(yè)試題練習(xí)