2014年高考數學沖刺壓軸題解題方法

編輯: 逍遙路 關鍵詞: 高中數學 來源: 高中學習網

2014年高考數學沖刺壓軸題解題方法

1. 復雜的問題簡單化,就是把一個復雜的問題,分解為一系列簡單的問題,把復雜的圖形,分成幾個基本圖形,找相似,找直角,找特殊圖形,慢慢求解,高考是分步得分的,這種思考方式尤為重要,能算的先算,能證的先證,踏上要點就能得分,就算結論出不來,中間還是有不少分能拿。

2. 運動的問題靜止化,對于動態(tài)的圖形,先把不變的線段,不變的角找到,有沒有始終相等的線段,始終全等的圖形,始終相似的圖形,所有的運算都基于它們,在找到變化線段之間的聯系,用代數式慢慢求解。

3. 一般的問題特殊化,有些一般的結論,找不到一般解法,先看特殊情況,比如動點問題,看看運動到中點怎樣,運動到垂直又怎樣,變成等腰三角形又會怎樣,先找出結論,再慢慢求解。

另外,還有一些細節(jié)要注意,三角比要善于運用,只要有直角就可能用上它,從簡化運算的角度來看,三角比優(yōu)于比例式優(yōu)于勾股定理,中考命題不會設置太多的計算障礙,如果遇上繁難運算要及時回頭,避免鉆牛角尖。

如果遇到找相似的三角形,要切記先看角,再算邊。遇上找等腰三角形同樣也是先看角,再看底邊上的高(用三線合一),最后才是邊。這都是能大大簡化運算的。還有一些小技巧,比如用斜邊上中線找直角,用面積算垂線等不一而足

具體方法較多,如果有時間,我會舉實例進行分析。

最后說一下初中需要掌握的主要的數學思想:

1. 方程與函數思想

利用方程解決幾何計算已經不能算難題了,建立變量間的函數關系,也是經常會碰到的,常見的建立函數關系的方法有比例線段,勾股定理,三角比,面積公式等

2. 分類討論思想

這個大家碰的多了,就不多講了,常見于動點問題,找等腰,找相似,找直角三角形之類的。

3. 轉化與化歸思想

就是把一個問題轉化為另一個問題,比如把四邊形問題轉化為三角形問題,還有壓軸題中時有出現的找等腰三角形,有時可以轉化為找一個和它相似的三角形也是等腰三角形的問題等等,代數中用的也很多,比如無理方程有理化,分式方程整式化等等

4. 數形結合思想

高中用的較多的是用幾何問題去解決直角坐標系中的函數問題,對于高中生,盡可能從圖形著手去解決,比如求點的坐標,可以通過往坐標軸作垂線,把它轉化為求線段的長,再結合基本的相似全等三角比解決,盡可能避免用兩點間距離公式列方程組,比較典型的是08年中考,倒數第2題,用解析法的同學列出一個極其復雜的方程后,無法繼續(xù)求解下去了,而用幾何方法,結合相似三角比可以輕易解決。另一個典型的例子是09二模倒數第2題,用幾何法3分鐘解決,而用代數法30分鐘也未必能解決。所以遇到此類題目,切記先用幾何方法,實在做不出再用解析法。


本文來自:逍遙右腦記憶 http://yy-art.cn/gaozhong/580174.html

相關閱讀:在反思與創(chuàng)新過程中提高數學課堂教學效果