東北三校(哈爾濱師大附中、東北師大附中、遼寧省實(shí)驗(yàn)中學(xué))高三

編輯: 逍遙路 關(guān)鍵詞: 高三 來源: 高中學(xué)習(xí)網(wǎng)
試卷說明:

參考答案一、選擇題題號123456789101112答案CCDADCDBBDAB二、填空題13. 14. 15. 16.三、解答題17.解:(Ⅰ) ……………………….2分 ………………………4分又因?yàn)?所以……………………….6分(Ⅱ) ……………………….8分又因?yàn)椤?10分所以……………………….12分18.(Ⅰ)證明:側(cè)棱底面,底面. ……………………….1分又底面是直角梯形,垂直于和,又側(cè)面,……………………….3分側(cè)面平面……………………….5分(Ⅱ) 連結(jié),底面是直角梯形,垂直于和,,,設(shè),則,三棱錐,.……………………….7分如圖建系,則,由題意平面的一個法向量為,不妨設(shè)平面的一個法向量為,,則,得,不妨令,則……………………….10分,……………………….11分設(shè)面與面所成二面角為,則……………………….12分19.解:(Ⅰ)S大于200元且不超過600元由,得,頻數(shù)為39,……………………….4分(Ⅱ)根據(jù)以上數(shù)據(jù)得到如下列聯(lián)表:非重度污染重度污染合計供暖季2830非供暖季770合計8515100………………………K2的觀測值………………………所以有95%的把握認(rèn)為空氣重度污染與供暖有關(guān). ………………………20.解:(Ⅰ)依題意有,又因?yàn),所以得故橢圓的方程為. ……3分(Ⅱ)依題意,點(diǎn)滿足所以是方程的兩個根.得所以線段的中點(diǎn)為. 同理,所以線段的中點(diǎn)為.……………………….5分因?yàn)樗倪呅问瞧叫兴倪呅,所以解得,?舍).即平行四邊形的對角線和相交于原點(diǎn). ……7分(Ⅲ)點(diǎn)滿足所以是方程的兩個根,即故.同理,. ……………………….9分又因?yàn),所以,其?從而菱形的面積為, 整理得,其中.……………………….10分故,當(dāng)或時,菱形的面積最小,該最小值為. ……12分 21. 解:(Ⅰ)∵函數(shù)的定義域?yàn)镽,………………………∴當(dāng)時,,當(dāng)時,!嘣谏蠁握{(diào)遞增,在上單調(diào)遞減。……………………… (Ⅱ)假設(shè)存在,使得成立,則。 ∵ ∴………………………當(dāng)時,,在上單調(diào)遞減,∴,即!.8分②當(dāng)時,,在上單調(diào)遞增,∴,即。………………………③當(dāng)時,在,,在上單調(diào)遞減在,,在上單調(diào)遞增所以,即—— 由(Ⅰ)知,在上單調(diào)遞減故,而,所以不等式無解綜上所述,存在,使得命題成立. ………………………22.證明:(Ⅰ)連結(jié).因?yàn)椤鳌住,所?同理.又因?yàn),所以,? ……5分(Ⅱ)因?yàn),,所以△∽△,?故.又因?yàn),所以△∽? ……10分23.解:()圓C:,直線l:………………………()將直線的參數(shù)方程代入圓的方程可得,………………………設(shè)是方程的兩個根,則,所以………………………24.解:(),所以原不等式轉(zhuǎn)化為 解得,所以原不等式的解集為…………………(),……………………….8分解得或……………………….10分SADCBExyz東北三校(哈爾濱師大附中、東北師大附中、遼寧省實(shí)驗(yàn)中學(xué))高三第一次聯(lián)合考試?yán)砜茢?shù)學(xué)試題(掃描版有答案)
本文來自:逍遙右腦記憶 http://yy-art.cn/gaosan/1073045.html

相關(guān)閱讀:高三上冊數(shù)學(xué)理科期末試題及答案