河北省唐山一中屆高三12月月考數(shù)學(xué)(理)試題

編輯: 逍遙路 關(guān)鍵詞: 高三 來(lái)源: 高中學(xué)習(xí)網(wǎng)
試卷說(shuō)明:

第Ⅰ卷(共60分)一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.不等式解集為Q,,若,則等于( ) A. B. C.4 D. 22.設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,若,則(。 B. C. D. 3.已知直線 ⊥平面,直線m?平面,則“∥”是“ ⊥m”的(  。4.已知命題p:?x∈(0,),3x>2x,命題q:?x∈(,0),,則下列命題為真命題的是(。﹑∧q B .(?p)∧q(?p)∧(?q)p∧(?q)5.直線與圓C:交于兩點(diǎn),則的面積為( )AB.C. D. 6.已知向量,若,則等于A. B. C. D. 7.已知雙曲線 的左、右焦點(diǎn)分別為,以為直徑的圓與雙曲線漸近線的一個(gè)交點(diǎn)為,則此雙曲線的方程為( )A. B. C. D.8.已知三棱錐的俯視圖與側(cè)視圖如圖所示,俯視圖是邊長(zhǎng)為2的正三角形,側(cè)視圖是有一直角邊為2的直角三角形,則該三棱錐的正視圖可能為9.函數(shù)的圖像為,如下結(jié)論中錯(cuò)誤的是( )A.關(guān)于直線對(duì)稱B.關(guān)于點(diǎn)對(duì)稱 C.在區(qū)間內(nèi)是增函數(shù) D.得圖像向右平移個(gè)單位長(zhǎng)度可以得到圖像10.已知函數(shù)是偶函數(shù),且,當(dāng)時(shí),,則方程在區(qū)間上的解的個(gè)數(shù)是 A.8 B.9 C.10 D.11 11.△ABC內(nèi)接于以O(shè)為圓心,1為半徑的圓,且,則的值為() B.1 C. D. 第Ⅱ卷(共90分)二、填空題(每題5分,滿分20分,將答案填在答題紙上)13.拋物線過(guò)點(diǎn),則點(diǎn)到拋物線焦點(diǎn)的距離為 .14.已知滿足約束條件,點(diǎn)A(,1), B(x,y)為坐標(biāo)原點(diǎn),則最值時(shí)15.已知A、B、C是球的球面上三點(diǎn),∠C=90°,AB=2,BC=4,球O的表面積為與所成角余弦值為 .16.已知函數(shù)對(duì)于一切實(shí)數(shù)x,y均有成立,且 恒成立時(shí),實(shí)數(shù)a的取值范圍是 .三、解答題 (本大題共6小題,共70分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.) 17.(本小題滿分10分)已知等差數(shù)列中,公差,其前項(xiàng)和為,且滿足:,.(1)求數(shù)列的通項(xiàng)公式; (2)令,,求的最小值.18.(本小題滿分12分)已a(bǔ),b,分別是的三個(gè)內(nèi)角A,B,的對(duì)邊,求A的大。划(dāng)?shù)娜≈捣秶?19.(本小題滿分12分)在四棱錐P?ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M恰好是AC中點(diǎn),又PA=AB=4,∠CDA=120°()求證:BD⊥PC;()∥平面PD,求AF的長(zhǎng);()求二面角A?PC?B的余弦值.考點(diǎn):1.線面垂直的判定和性質(zhì);2.正三角形的性質(zhì);3.線面平行的判定;4.面面平行的判定;5.空間向量法;6.夾角公式.20.(本小題滿分12分)某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為億元,其中用于風(fēng)景區(qū)改造為億元。該市決定制定生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列三個(gè)條件:①每年用于風(fēng)景區(qū)改造費(fèi)用隨增加而增加億元,至多億元;③每年用于風(fēng)景區(qū)改造費(fèi)用不得低于%,但不得高于每年改造生態(tài)環(huán)境總費(fèi)用的25%.若,,請(qǐng)你分析能否采用函數(shù)模型y作為生態(tài)環(huán)境改造投資方案.當(dāng)時(shí),,∴能采用函數(shù)模型作為生態(tài)環(huán)境改造投資方案.考點(diǎn):1.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;2. 利用導(dǎo)數(shù)求函數(shù)的最值.21.(本小題滿分12分)如圖,已知橢圓的長(zhǎng)軸為AB,過(guò)點(diǎn)B的直線與軸垂直,橢圓的離心率,F為橢圓的左焦點(diǎn),且求此橢圓的標(biāo)準(zhǔn)方程;設(shè)P是此橢圓上異于A,B的任意一點(diǎn), 軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q,使得HP=PQ,連接AQ并延長(zhǎng)交直線于點(diǎn),為的中點(diǎn),判定直線與以為直徑的圓O位置關(guān)系。22.(本小題滿分12分)已知.()曲線y=f(x)在x=0的切線垂直,求的值;()若x∈[a,2a]求f(x)的最大值;()若f(x1)=f(x2)=0(x1<x2),求證:.河北省唐山一中屆高三12月月考數(shù)學(xué)(理)試題
本文來(lái)自:逍遙右腦記憶 http://yy-art.cn/gaosan/1103226.html

相關(guān)閱讀:高三上冊(cè)數(shù)學(xué)次月考試題