高三上學(xué)期數(shù)學(xué)期中文科試題(附答案)

編輯: 逍遙路 關(guān)鍵詞: 高三 來源: 高中學(xué)習(xí)網(wǎng)


汕頭市金山中學(xué)第一學(xué)期期中考
高三文科數(shù)學(xué) 試題卷
本試題分第Ⅰ卷()和第Ⅱ卷(非)兩部分,滿分150分,時間120分鐘.
第Ⅰ卷 (選擇題 共50分)
一、選擇題:(本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有一項是符合題目要求的)
1.已知 ,則 ( )
A. B. C. D.
2.設(shè) , 那么“ ”是“ ”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分又不必要條件
3.設(shè)數(shù)列 的前n項和 ,則 的值為 ( )
A. 15 B. 16 C. 49 D.64
4.設(shè) 是兩條不同的直線, 是兩個不同的平面,下列命題中正確的是( )
A.若 , , ,則 B.若 , , ,則
C.若 , , ,則 D.若 , , ,則
5.下列命題中正確的是( )
A. 的最小值是2B. 的最小值是2
C. 的最大值是
D. 的最小值是
6.經(jīng)過圓 的圓心 ,且與直線 垂直的直線方程是( ) A. B. C. D.
7.已知 ,則 的大小為 ( )
A. B. C. D.
8.設(shè)函 ,則滿足 的 的取值范圍是 ( )
A. ,2] B.[0,2] C. D.
9.奇函數(shù) 在 上為減函數(shù),且 ,則不等式 的解集為( )
A. B. C. D. (3, )
10.設(shè)函數(shù) ( , 為自然對數(shù)的底數(shù)).若存在 使 成立,則 的取值范圍是( )
A. B. C. D.
第Ⅱ卷 (非選擇題 共100分)
二、題:(本大題共4小題,每小題5分,共20分.)
11. 函數(shù) 的定義域為___________
12.若命題“ ”是真命題,則實數(shù) 的取值范圍為 .
13.經(jīng)過原點且與函數(shù) ( 為自然對數(shù)的底數(shù))的圖象相切的直線方程為
14.定義“正對數(shù)”: ,現(xiàn)有四個命題:①若 ,則 ;②若 ,則 ③若 ,則 ④若 ,則
其中的真命題有____________ (寫出所有真命題的序號)

三、解答題:(本大題共6小題,共80分.解答應(yīng)寫出文字說明,證明過程或演算步驟.)
15.(本小題滿分12分)已知集合 , .
(Ⅰ)求集合 和集合 ;
(Ⅱ)若 ,求 的取值范圍。


16. (本小題滿分14分)如圖,四棱錐 的底面 是邊長為2的菱形, .已知 .
(Ⅰ)證明:
(Ⅱ)若 為 的中點,求三菱錐 的體積.

17. (本小題滿分14分)已知函數(shù) 在 、 處分別取得極大值和極小值,記點 .
⑴求 的值;
⑵證明:線段 與曲線 存在異于 、 的公共點;
18.(本小題滿分14分)
已知直線l: ( R)和橢圓C: , 橢圓C的離心率為 ,連接橢圓的四個頂點形成四邊形的面積為2 .
⑴求橢圓C的方程;
⑵直線l/與橢圓C有兩個不同的交點,求實數(shù) 的取值范圍;
⑶當(dāng) 時,設(shè)直線l與y軸的交點為P,為橢圓C上的動點,求線段P長度的最大值。


19. (本小題滿分14分)某種商品的成本為5元/ 件,開始按8元/件銷售,銷售量為50件,為了獲得最大利潤,商家先后采取了提價與降價兩種措施進行試銷。經(jīng)試銷發(fā)現(xiàn):銷售價每上漲1元每天銷售量就減少10件;而降價后,日銷售量Q(件)與實際銷售價x(元)滿足關(guān)系:


(1)求總利潤(利潤=銷售額-成本)y(元)與銷售價x(件)的函數(shù)關(guān)系式;
(2)試問:當(dāng)實際銷售價為多少元時,總利潤最大.
20.(本小題滿分14分)
已知函數(shù)
(1)試討論函數(shù) 的單調(diào)性;
(2)若函數(shù) 在 是單調(diào)減函數(shù),求實數(shù) 的取值范圍;
(3)在(2)的條件下,當(dāng) 時,證明:
(其中(e≈2.718……即自然對數(shù)的底數(shù))

汕頭市金山中學(xué)第一學(xué)期期中考試
高三文科數(shù)學(xué) 參考答案
AAA DCCA CBA
11. 12. 13. 14.①③④
15.解:(Ⅰ)集合 = 2分
集合 = 4分
(Ⅱ)由 得 (6 分) 7分
或者 (9分) 10分
綜上所述, 的取值范圍為 或 12分
16.(1)證明:連接 交于 點 1分
2分
又 是菱形 3分
而 4分 ⊥面 5分
(2)由(1) ⊥面
設(shè)AC與BD交于點O
由余弦定理 AC= 7分

三角形ABD與三角形PBD全等 8分 故AO=PO= , 9分
由勾股定理,PO AC 10分 = =3 11分
14分
17. 解法一:∵ ,依題意,
∴ ,(2分)
由 ,得 (3分)
令 , 的單調(diào)增區(qū)間為 和 ,(5分)
,單調(diào)減區(qū)間為 (7分)
所以函數(shù) 在 處取得極值。 故 (9分)
所以直線 的方程為 (10分)
由 得 (11分)
令 ,易得 ,(13分)
而 的圖像在 內(nèi)是一條連續(xù)不斷的曲線,故 在 內(nèi)存在零點 ,這表明線段 與曲線 有異于 的公共點。(14分)
解法二:同解法一,可得直線 的方程為 (10分)
由 得 (11分)
解得 (13分)
所以線段 與曲線 有異于 的公共點 。 (14分)

18.解:⑴由離心率 ,得

又因為 ,所以 ,
即橢圓標(biāo)準(zhǔn)方程為 . ---------4分
⑵ 由 消 得: .
所以 , 可化為
解得 . --------8分
⑶由l: ,設(shè)x=0, 則y=2, 所以P(0, 2). --------9分
設(shè)(x, y)滿足 ,
則P2 =x2 +(y ?2)2 =2?2y2 +(y ? 2 )2 = ?y2 ?4y +6
= ?(y +2)2 +10,
因為 ?1 y 1, 所以 --------11分
當(dāng)y=-1時,P取最大值3 --------14分

19. 解:(1)據(jù)題意的

(2)由(1)得:當(dāng) 時,

當(dāng) 時, , 為增函數(shù)
當(dāng) 時, 為減函數(shù)
當(dāng) 時,
當(dāng) 時,
當(dāng) 時,
當(dāng) 時,
綜上知:當(dāng) 時,總利潤最大,最大值為195

20.
解:(1) 定義域為 ...................................................................1分
.......................................................................2分

當(dāng) 時, 遞增,
當(dāng) 時, 遞減,......................................................3分
的單調(diào)增區(qū)間為 的單調(diào)減區(qū)間為 ................4分
的極大值為 無極小值.........................................5分
(2) 函數(shù) 在 是單調(diào)減函數(shù), ...7分
.................................
................8分
..............................................................................9分
(3)
...................................................................10分




本文來自:逍遙右腦記憶 http://yy-art.cn/gaosan/978706.html

相關(guān)閱讀:四川省成都市屆高三上學(xué)期(高二下學(xué)期期末)摸底測試數(shù)學(xué)理 Wor