浙江省寧波市屆高三上學(xué)期期末考試數(shù)學(xué)理試題(WORD版)

編輯: 逍遙路 關(guān)鍵詞: 高三 來源: 高中學(xué)習(xí)網(wǎng)
試卷說明:

寧波市學(xué)年第一學(xué)期期末考試高三數(shù)學(xué)(理科)試卷第Ⅰ卷(選擇題部分 共50分)一、選擇題:本大題共10 小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。(1)已知復(fù)數(shù),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限(2)正三棱錐中,,則三棱錐的體積為(A)1 (B)3 (C) (D)(3)已知函數(shù)是偶函數(shù),且,則(A)2 (B)3 (C)4 (D)5(4)關(guān)于函數(shù),下列結(jié)論中不正確的是(A)在區(qū)間上單調(diào)遞增 (B)的一個(gè)對(duì)稱中心為 (C)的最小正周期為 (D)當(dāng)時(shí),的值域?yàn)椋?)已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積為(A)9cm3 (B)10cm3 (C)11cm3 (D)cm3(6)已知為互不重合的三條直線,平面平面,,那么是的(A)充分不必要條件 (B)必要不充分條件(C)充分必要條件 (D)既不充分也不必要條件(7)下列四個(gè)圖中,哪個(gè)可能是函數(shù)的圖象(8)已知都是正實(shí)數(shù),且滿足,則的最小值為(A)12 (B)10 (C)8 (D)6(9)點(diǎn)為不等式組表示的平面區(qū)域上一點(diǎn),則取值范圍為(A) (B) (C) (D)(10)已知雙曲線的兩條漸近線為,過右焦點(diǎn)作垂直的直線交于兩點(diǎn)。若成等差數(shù)列,則雙曲線的離心率為(A) (B) (C) (D)第Ⅱ 卷(非選擇題部分 共100分)二、填空題:本大題共7小題,每小題4分,共28分。(11)已知,則 .(12)直線與圓相交于兩點(diǎn),且,則 .(13)在的展開式中,項(xiàng)的系數(shù)為_______________.(14)執(zhí)行如圖所示的程序框圖,則輸出的值是_________________.(15)中,分別為角的對(duì)邊,若,且,則的值為________________.(16)已知數(shù)列滿足,,則的值為_______________.(17)已知為的外心,。若,則_____________.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明、證明過程或演算步驟。(18)(本題滿分14分)已知甲箱裝有個(gè)白球2個(gè)黑球,乙箱裝有2個(gè)白球1個(gè)黑球,這些球除顏色外完全相同。現(xiàn)從甲箱中隨機(jī)摸兩球,乙箱中隨機(jī)摸一球,若恰好摸出三個(gè)黑球的概率為。(Ⅰ)求的值;(Ⅱ)記甲箱摸出個(gè)黑球,乙箱摸出個(gè)黑球,。求的分布列及的值。(19)(本題滿分14分)設(shè)是等差數(shù)列,是各項(xiàng)都為正數(shù)的等比數(shù)列,且,。(Ⅰ)求數(shù)列,的通項(xiàng)公式;(Ⅱ)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍。(20)(本題滿分15分)如圖,在四棱錐中,為上一點(diǎn),平面。,,,,為上一點(diǎn),且。(Ⅰ)求證:平面;(Ⅱ)若二面角為,求的值。(21)(本題滿分15分)已知曲線:,曲線:。曲線的左頂點(diǎn)恰為曲線的左焦點(diǎn)。(Ⅰ)求的值;(Ⅱ)設(shè)為曲線上一點(diǎn),過點(diǎn)作直線交曲線于兩點(diǎn)。直線交曲線于兩點(diǎn)。若為中點(diǎn),求證:直線的方程為;求四邊形的面積。(22)(本題滿分14分)設(shè)函數(shù)。(Ⅰ)求函數(shù)的極值;(Ⅱ)是否存在,使得在該區(qū)間上的值域?yàn)?若存在,求出的值;若不存在,說明理由。 每天發(fā)布最有價(jià)值的高考資源 每天發(fā)布最有價(jià)值的高考資源 每天發(fā)布最有價(jià)值的浙江省寧波市屆高三上學(xué)期期末考試數(shù)學(xué)理試題(WORD版)
本文來自:逍遙右腦記憶 http://yy-art.cn/gaosan/1063798.html

相關(guān)閱讀:高三下冊(cè)數(shù)學(xué)理科期末試卷及答案