下學(xué)期高三二輪復(fù)習(xí)數(shù)學(xué)(理)綜合驗(yàn)收試題(1)【新課標(biāo)】考試說明:本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在本試卷和答題卡相應(yīng)位置上.2.做答第Ⅰ卷時(shí)選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑如需改動(dòng)用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)寫在本試卷上無效.3.答第Ⅱ卷時(shí).4.保持答題卡面清潔,不得折疊、不要弄破、弄皺,不準(zhǔn)用涂改液、修正帶、刮紙刀.第Ⅰ卷選擇題一、選擇題:本大題共12小題,每小題5分,在每小題給的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.若復(fù)數(shù)滿足(其中是虛數(shù)單位),則的實(shí)部為( )(A)6 (B)1 (C) (D)2.某校高三一班有學(xué)生54人,二班有學(xué)生42人,現(xiàn)在要用分層抽樣的方法從兩個(gè)班抽出16人參加視力測(cè)試,則一班和二班分別被抽取的人數(shù)是( )(A)8,8 (B)9,7 (C)10,6 (D)12,4 3.一個(gè)簡(jiǎn)單幾何體的視圖、側(cè)視圖如圖所示,則其俯視圖可能為:①長(zhǎng)、寬不相等的長(zhǎng)方形;②正方形;③圓;④橢圓.其中正確的是( ) (A)①② (B)②③ (C)③④ (D)①④.函數(shù)的零點(diǎn)所在區(qū)間( )(A) (B)(C) (D).執(zhí)行如圖所示的程序框圖,若輸入的值為8,則輸出的值為( )(A)4 (B)8 (C)10 (D)12 6.=10是 ”的展開式中有常數(shù)項(xiàng)的( )(A)充分不必要條件 (B)必要不充分條件(C)充分必要條件 (D)既不充分也不必要條件7.雙曲線的漸近線與圓相切,則雙曲線離心率為( )(A) (B) (C) (D)8.已知函數(shù)①,②,則下列結(jié)論正確的是( )(A)兩個(gè)函數(shù)的圖象均關(guān)于點(diǎn)成中心對(duì)稱(B)兩個(gè)函數(shù)的圖象均關(guān)于直線成軸對(duì)稱(C)兩個(gè)函數(shù)在區(qū)間上都是單調(diào)遞增函數(shù)(D)兩個(gè)函數(shù)的最小正周期相同9.設(shè)表示兩條直線,表示兩個(gè)平面,則下列命題是真命題的是( )(A)若,則(B)若,則(C)若,則(D)若,,則10.已知等比數(shù)列的前10項(xiàng)的積為32,則以下說法中正確的個(gè)數(shù)是( )①數(shù)列的各項(xiàng)均為正數(shù); ②數(shù)列中必有小于的項(xiàng);③數(shù)列的公比必是正數(shù); ④數(shù)列中的首項(xiàng)和公比中必有一個(gè)大于1.(A)1個(gè) (B)2個(gè) (C)3個(gè) (D)4個(gè)11.已知函數(shù),(),若,,使得,則實(shí)數(shù),的取值范圍是( )(A) (B) (C) (D) 12.已知中心在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左右焦點(diǎn)分別為,兩條曲線在第一象限的交點(diǎn)為P,是以為底邊的等腰三角形.若,橢圓與雙曲線的離心率分別為,則的取值范圍是( )(A) (B) (C) (D)第Ⅱ卷本卷包括必考題和選考題兩部分第13題第21題為必考題,每個(gè)試題考生都必須答,第2224題為選考題,考生根據(jù)要求答.二填空題:本大題共4小題,每小題5分.13.為正整數(shù),,經(jīng)計(jì)算得,,觀察上述結(jié)果,對(duì)任意正整數(shù),可推測(cè)出一般結(jié)論是____________14.設(shè)是單位向量,且,則向量的夾角等于____________15.的準(zhǔn)線為,過點(diǎn)且斜率為的直線與相交于點(diǎn),與的一個(gè)交點(diǎn)為,若,則等于____________ 16.正三角形的邊長(zhǎng)為2,將它沿高翻折,使點(diǎn)與點(diǎn)間的距離為1,此時(shí)四面體外接球表面積為____________ 三解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.(17)(本小題滿分12分)函數(shù)的一段圖象如圖所示.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)減區(qū)間,并求出的最大值及取到最大值時(shí)的集合;(18)(本小題滿分12分)在本次考試中共有12道選擇題,每道選擇題有4個(gè)選項(xiàng),其中只有一個(gè)是正確的,分標(biāo)準(zhǔn)規(guī)定:每題只選一項(xiàng),答對(duì)得5分,不答或答錯(cuò)得0分某考生每道題都給出一個(gè)答案考生已確定有9道題的答案是正確的,而其余題中,有1道題可判斷出兩個(gè)選項(xiàng)是錯(cuò)誤的,有一道可以判斷出一個(gè)選項(xiàng)是錯(cuò)誤的,還有一道因不了解題意只能亂猜,試求該考生(1)選擇題得60分的概率;(2)選擇題所得分?jǐn)?shù)的分布列和數(shù)學(xué)期望.(19)(本小題滿分12分)如圖所示,在四棱錐中,四邊形為菱形,為等邊三角形,平面平面,且,為的中點(diǎn).(1)求證:;(2)在棱上是否存在點(diǎn),使與平面成角正弦值為,若存在,確定線段的長(zhǎng)度,不存在,請(qǐng)說明理由.(20)(本小題滿分12分)已知橢圓的離心率為,過焦點(diǎn)且垂直于長(zhǎng)軸的直線被橢圓截得的弦長(zhǎng)為,過點(diǎn)的直線與橢圓相交于兩點(diǎn)(1)求橢圓的方程;(2)設(shè)為橢圓上一點(diǎn),且滿足(為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.(21)(本小題滿分12分)已知函數(shù)(1)若函數(shù),求函數(shù)的單調(diào)區(qū)間;(2)設(shè)直線為函數(shù)的圖像上的一點(diǎn)處的切線,證明:在區(qū)間上存在唯一的,使得直線與曲線相切.請(qǐng)考生在題22)(23)(24)中任選一題作答,如果多做,則按所做的的第一題計(jì)分.做題時(shí)用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑.(22)(本小題滿分10分)選修41:幾何證明選講如圖,是⊙的直徑,弦的延長(zhǎng)線相交于點(diǎn),垂直的延長(zhǎng)線于點(diǎn).求證:(1); (2)四點(diǎn)共圓.本小題滿分10分選修44:坐標(biāo)系與參數(shù)方程中,直線的參數(shù)方程為(為參數(shù))與曲線交于兩點(diǎn)(1)求的;(2)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)中點(diǎn)的距離.(24)(本小題滿分10分)選修45:不等式選講已知函數(shù)(1)當(dāng)時(shí),求函數(shù)的定義域;(2)當(dāng)函數(shù)的值域?yàn)闀r(shí),求實(shí)數(shù)的取值范圍.A 2B 3D 4C 5 B 6A 7C 8C 9D 10A 11D 12C二、填空題13、 14、 15、2 16、三、解答題17.(本小題滿分12分)解由圖知,∴,∴,∴…… 2分∵的圖象過點(diǎn),∴,∴,∴,∵∴,∴…… 6分由得函數(shù)的單調(diào)減區(qū)間為,…… 分函數(shù)的最大值為3,取到最大值時(shí)x的集合為.…… 12分18(本小題滿分12分)解:(1)得分為60分 …… 1分得分為60分,12道題必須全做對(duì).在其余的3道題中,有1道題答對(duì)的概率為,有1道題答對(duì)的概率為,還有1道答對(duì)的概率為,…… 4分所以得分為60分的概率為 …… 5分(2)依題意,該考生得分的范圍為{45,50,55,60} …… 6分得分為45分表示只做對(duì)了9道題,其余各題都做錯(cuò),所以概率為 …… 7分得分為50分的概率為 …… 8分得分為55分的概率為 …… 9分得分為60分的概率為 …… 10分所以得分的分布列為45505560數(shù)學(xué)期望 …… 12分19.(本小題滿分12分)(1)證明:連接,,因?yàn)槠矫嫫矫妫瑸榈冗吶切危瑸榈闹悬c(diǎn),所以平面,…… 2分因?yàn)樗倪呅螢榱庑危遥瑸榈闹悬c(diǎn),所以…… 分,所以面,所以…… 6分(2)以為原點(diǎn),分別為軸建立空間直角坐標(biāo)系…… 分因?yàn)辄c(diǎn)在棱上,設(shè),面法向量,所以,…… 9分,解得,…… 11分所以存在點(diǎn),…… 12分20(本小題滿分12分)(1) 由已知,所以,所以所以 …… 1分 又由過焦點(diǎn)且垂直于長(zhǎng)軸的直線被橢圓截得的弦長(zhǎng)為所以 …… 3分 所以 …… 4分 (2)設(shè) 設(shè)與橢圓聯(lián)立得整理得得 …… 6分 由點(diǎn)在橢圓上得 …… 8分 又由 所以所以 …… 10分 所以 由得所以,所以或 …… 12分21(本小題滿分12分)解:(1)…… 2分,,增區(qū)間為(0,1)和(1,+)…… 4分(2)切線方程為①……6分設(shè)切于點(diǎn),方程,②…… 8分由①②可得,由(1)知,在區(qū)間上單調(diào)遞增又,,由零點(diǎn)存在性定理,知方程必在區(qū)間上有唯一的根,這個(gè)根就是故在區(qū)間上存在唯一的,使得直線與曲線相切…… 12分22(本小題滿分1分)證明:(1),…… 5分(2)是⊙的直徑,所以,,,,四點(diǎn)與點(diǎn)等距,四點(diǎn)共圓…… 10分(本小題滿分1分)的參數(shù)方程(為參數(shù))…… 2分方程得設(shè)對(duì)應(yīng)的參數(shù)分別為,則,,所以 …… 5分直角坐標(biāo), …… 6分在直線, …… 7分對(duì)應(yīng)參數(shù)為, 由參數(shù)幾何意義,所以點(diǎn)中點(diǎn)的距離……1 0分(本小題滿分1分)當(dāng)時(shí)函數(shù)的定義域不等式 …… 2分或 …… 5分函數(shù)的定義域,因?yàn)楹瘮?shù)的值域?yàn)椤?7分 …… 9分 所以 …… 10分!第1頁(yè) 共16頁(yè)學(xué)優(yōu)高考網(wǎng)。2232正視圖側(cè)視圖【新課標(biāo)版】屆高三下學(xué)期第一次月考 數(shù)學(xué)理
本文來自:逍遙右腦記憶 http://yy-art.cn/gaosan/1084788.html
相關(guān)閱讀:湖北高考理科數(shù)學(xué)試卷答案解析